
Ann E Jerse

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4846063/publications.pdf Version: 2024-02-01

ANN F IERSE

#	Article	IF	CITATIONS
1	Meningococcal Detoxified Outer Membrane Vesicle Vaccines Enhance Gonococcal Clearance in a Murine Infection Model. Journal of Infectious Diseases, 2022, 225, 650-660.	4.0	15
2	A Single Amino Acid Substitution in Elongation Factor G Can Confer Low-Level Gentamicin Resistance in <i>Neisseria gonorrhoeae</i> . Antimicrobial Agents and Chemotherapy, 2022, 66, e0025122.	3.2	4
3	Molecular Features of Cephalosporins Important for Activity against Antimicrobial-Resistant <i>Neisseria gonorrhoeae</i> . ACS Infectious Diseases, 2021, 7, 293-308.	3.8	7
4	trans-Translation inhibitors bind to a novel site on the ribosome and clear Neisseria gonorrhoeae in vivo. Nature Communications, 2021, 12, 1799.	12.8	20
5	Preclinical Testing of Vaccines and Therapeutics for Gonorrhea in Female Mouse Models of Lower and Upper Reproductive Tract Infection. Journal of Infectious Diseases, 2021, 224, S152-S160.	4.0	8
6	Planning for a Gonococcal Vaccine: A Narrative Review of Vaccine Development and Public Health Implications. Sexually Transmitted Diseases, 2021, 48, 453-457.	1.7	18
7	A novel gonorrhea vaccine composed of MetQ lipoprotein formulated with CpG shortens experimental murine infection. Vaccine, 2020, 38, 8175-8184.	3.8	24
8	Editorial: Immunity to Neisseria gonorrhoeae. Frontiers in Immunology, 2020, 11, 1375.	4.8	3
9	Deletion of major porins from meningococcal outer membrane vesicle vaccines enhances reactivity against heterologous serogroup B Neisseria meningitidis strains. Vaccine, 2020, 38, 2396-2405.	3.8	11
10	The serogroup B meningococcal outer membrane vesicle-based vaccine 4CMenB induces cross-species protection against Neisseria gonorrhoeae. PLoS Pathogens, 2020, 16, e1008602.	4.7	49
11	Title is missing!. , 2020, 16, e1008602.		0
12	Title is missing!. , 2020, 16, e1008602.		0
13	Title is missing!. , 2020, 16, e1008602.		0
14	Title is missing!. , 2020, 16, e1008602.		0
15	Commensal Neisseria Kill Neisseria gonorrhoeae through a DNA-Dependent Mechanism. Cell Host and Microbe, 2019, 26, 228-239.e8.	11.0	52
16	Progress Toward a Gonococcal Vaccine: The Way Forward. Frontiers in Immunology, 2019, 10, 2417.	4.8	49
17	Could Dampening Expression of the Neisseria gonorrhoeae <i>mtrCDE</i> -Encoded Efflux Pump Be a Strategy To Preserve Currently or Resurrect Formerly Used Antibiotics To Treat Gonorrhea?. MBio, 2019, 10, .	4.1	18
18	Advancing vaccine development for gonorrhoea and the Global STI Vaccine Roadmap. Sexual Health, 2019, 16, 426.	0.9	26

Ann E Jerse

#	Article	IF	CITATIONS
19	Neisseria gonorrhoeae MlaA influences gonococcal virulence and membrane vesicle production. PLoS Pathogens, 2019, 15, e1007385.	4.7	40
20	Biomedical Response to Neisseria gonorrhoeae and Other Sexually Transmitted Infections in the US Military. Military Medicine, 2019, 184, 51-58.	0.8	2
21	Pharmacokinetic Data Are Predictive of <i>In Vivo</i> Efficacy for Cefixime and Ceftriaxone against Susceptible and Resistant <i>Neisseria gonorrhoeae</i> Strains in the Gonorrhea Mouse Model. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	33
22	Biological feasibility and importance of a gonorrhea vaccine for global public health. Vaccine, 2019, 37, 7419-7426.	3.8	34
23	In Vivo -Selected Compensatory Mutations Restore the Fitness Cost of Mosaic penA Alleles That Confer Ceftriaxone Resistance in Neisseria gonorrhoeae. MBio, 2018, 9, .	4.1	51
24	<i>In Vitro</i> Susceptibility of Neisseria gonorrhoeae Strains to Mupirocin, an Antibiotic Reformulated for Parenteral Administration in Nanoliposomes. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	7
25	Lipid-Modified Azurin of Neisseria gonorrhoeae Is Not Surface Exposed and Does Not Interact With the Nitrite Reductase AniA. Frontiers in Microbiology, 2018, 9, 2915.	3.5	4
26	SliC is a surface-displayed lipoprotein that is required for the anti-lysozyme strategy during Neisseria gonorrhoeae infection. PLoS Pathogens, 2018, 14, e1007081.	4.7	30
27	<i>cis</i> - and <i>trans</i> -Acting Factors Influence Expression of the <i>norM</i> -Encoded Efflux Pump of Neisseria gonorrhoeae and Levels of Gonococcal Susceptibility to Substrate Antimicrobials. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	4
28	Direct Inoculation and Human Transferrin Supplementation Increases the Survivability of Neisseria gonorrhoeae in the Upper Reproductive Tract of Estrogenâ€Treated Female BALB/c Mice. FASEB Journal, 2018, 32, lb591.	0.5	0
29	Alanine 501 Mutations in Penicillin-Binding Protein 2 from <i>Neisseria gonorrhoeae</i> : Structure, Mechanism, and Effects on Cephalosporin Resistance and Biological Fitness. Biochemistry, 2017, 56, 1140-1150.	2.5	39
30	Control of gdhR Expression in Neisseria gonorrhoeae via Autoregulation and a Master Repressor (MtrR) of a Drug Efflux Pump Operon. MBio, 2017, 8, .	4.1	14
31	<i>Neisseria gonorrhoeae</i> : Drug Resistance, Mouse Models, and Vaccine Development. Annual Review of Microbiology, 2017, 71, 665-686.	7.3	166
32	Both MisR (CpxR) and MisS (CpxA) Are Required for Neisseria gonorrhoeae Infection in a Murine Model of Lower Genital Tract Infection. Infection and Immunity, 2017, 85, .	2.2	16
33	Gonococcal Resistance in a Population of At-Risk United States (U.S.) Department of Defense (DoD) Beneficiaries. Open Forum Infectious Diseases, 2016, 3, .	0.9	0
34	Proteomics-driven Antigen Discovery for Development of Vaccines Against Gonorrhea. Molecular and Cellular Proteomics, 2016, 15, 2338-2355.	3.8	82
35	Summary and Recommendations from the National Institute of Allergy and Infectious Diseases (NIAID) Workshop "Gonorrhea Vaccines: the Way Forward― Vaccine Journal, 2016, 23, 656-663.	3.1	34
36	Antibacterial activity of resazurin-based compounds against Neisseria gonorrhoeae in vitro and in vivo. International Journal of Antimicrobial Agents, 2016, 48, 367-372.	2.5	18

Ann E Jerse

#	Article	IF	CITATIONS
37	Overproduction of the MtrCDE Efflux Pump in Neisseria gonorrhoeae Produces Unexpected Changes in Cellular Transcription Patterns. Antimicrobial Agents and Chemotherapy, 2015, 59, 724-726.	3.2	13
38	Phase-Variable Expression of <i>lptA</i> Modulates the Resistance of Neisseria gonorrhoeae to Cationic Antimicrobial Peptides. Antimicrobial Agents and Chemotherapy, 2014, 58, 4230-4233.	3.2	21
39	Vaccines against gonorrhea: Current status and future challenges. Vaccine, 2014, 32, 1579-1587.	3.8	93
40	Lipid A's Structure Mediates Neisseria gonorrhoeae Fitness during Experimental Infection of Mice and Men. MBio, 2013, 4, e00892-13.	4.1	56
41	Expanded Sexually Transmitted Infection Surveillance Efforts in the United States Military: A Time for Action. Military Medicine, 2013, 178, 1271-1280.	0.8	10
42	Vaccine research for gonococcal infections: where are we?. Sexually Transmitted Infections, 2013, 89, iv63-iv68.	1.9	46
43	Vaccines for Gonorrhea: Can We Rise to the Challenge?. Frontiers in Microbiology, 2011, 2, 124.	3.5	83
44	Estradiol-Treated Female Mice as Surrogate Hosts for Neisseria gonorrhoeae Genital Tract Infections. Frontiers in Microbiology, 2011, 2, 107.	3.5	117
45	Clinically relevant mutations that cause derepression of the <i>Neisseria gonorrhoeae</i> MtrCâ€MtrDâ€MtrE Efflux pump system confer different levels of antimicrobial resistance and <i>in vivo</i> fitness. Molecular Microbiology, 2008, 70, 462-478.	2.5	185
46	Local and humoral immune responses against primary and repeat Neisseria gonorrhoeae genital tract infections of 17β-estradiol-treated mice. Vaccine, 2008, 26, 5741-5751.	3.8	73
47	Phenotypic and Genotypic Analyses of <i>Neisseria gonorrhoeae</i> Isolates That Express Frequently Recovered PorB PIA Variable Region Types Suggest that Certain P1a Porin Sequences Confer a Selective Advantage for Urogenital Tract Infection. Infection and Immunity, 2008, 76, 3700-3709.	2.2	24
48	Identification of a new OmpA-like protein in Neisseria gonorrhoeae involved in the binding to human epithelial cells and in vivo colonization. Molecular Microbiology, 2007, 64, 1391-1403.	2.5	40
49	A Gonococcal Efflux Pump System Enhances Bacterial Survival in a Female Mouse Model of Genital Tract Infection. Infection and Immunity, 2003, 71, 5576-5582.	2.2	186
50	Growth of Neisseria gonorrhoeae in the Female Mouse Genital Tract Does Not Require the Gonococcal Transferrin or Hemoglobin Receptors and May Be Enhanced by Commensal Lactobacilli. Infection and Immunity, 2002, 70, 2549-2558.	2.2	50
51	Experimental Gonococcal Genital Tract Infection and Opacity Protein Expression in Estradiol-Treated Mice. Infection and Immunity, 1999, 67, 5699-5708.	2.2	184
52	Neisseria gonorrhoeae: Adaptation and Survival in the Urogenital Tract. , 0, , 199-227.		0
53	Role of Phase and Antigenic Variation in <i>Neisseria gonorrhoeae</i> Colonization. , 0, , 325-350.		2