Mariliis Lehtveer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4846008/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bioenergy with carbon capture and storage (BECCS): Global potential, investment preferences, and deployment barriers. Energy Research and Social Science, 2018, 42, 155-165.	3.0	153
2	The Potential Role of Ammonia as Marine Fuel—Based on Energy Systems Modeling and Multi-Criteria Decision Analysis. Sustainability, 2020, 12, 3265.	1.6	118
3	Techno-economic review of alternative fuels and propulsion systems for the aviation sector. Renewable and Sustainable Energy Reviews, 2021, 151, 111564.	8.2	61
4	What Future for Electrofuels in Transport? Analysis of Cost Competitiveness in Global Climate Mitigation. Environmental Science & Technology, 2019, 53, 1690-1697.	4.6	45
5	Biomass in the electricity system: A complement to variable renewables or a source of negative emissions?. Energy, 2019, 168, 532-541.	4.5	33
6	The role of negative carbon emissions in reaching the Paris climate targets: The impact of target formulation in integrated assessment models. Environmental Research Letters, 2020, 15, 124024.	2.2	28
7	How much can nuclear power reduce climate mitigation cost? – Critical parameters and sensitivity. Energy Strategy Reviews, 2015, 6, 12-19.	3.3	27
8	Using resource based slicing to capture the intermittency of variable renewables in energy system models. Energy Strategy Reviews, 2017, 18, 73-84.	3.3	26
9	Nuclear power as a climate mitigation strategy – technology and proliferation risk. Journal of Risk Research, 2015, 18, 273-290.	1.4	22
10	BECCS and DACCS as Negative Emission Providers in an Intermittent Electricity System: Why Levelized Cost of Carbon May Be a Misleading Measure for Policy Decisions. Frontiers in Climate, 2021, 3, .	1.3	20
11	The Benefit of Collaboration in the North European Electricity System Transition—System and Sector Perspectives. Energies, 2019, 12, 4648.	1.6	19
12	Managing variable renewables with biomass in the European electricity system: Emission targets and investment preferences. Energy, 2020, 213, 118786.	4.5	19
13	Multi-criteria analysis of nuclear power in the global energy system: Assessing trade-offs between simultaneously attainable economic, environmental and social goals. Energy Strategy Reviews, 2015, 8, 45-55.	3.3	17
14	Actuating the European Energy System Transition: Indicators for Translating Energy Systems Modelling Results into Policy-Making. Frontiers in Energy Research, 2021, 9, .	1.2	4
15	Estonian energy supply strategy assessment for 2035 and its vulnerability to climate driven shocks. Environmental Progress and Sustainable Energy, 2016, 35, 469-478.	1.3	1