Ana Guadalupe Gayubo Cazorla

List of Publications by Citations

Source:

https://exaly.com/author-pdf/484590/ana-guadalupe-gayubo-cazorla-publications-by-citations.pdf **Version:** 2024-04-27

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

155
papers7,458
citations52
h-index79
g-index158
ext. papers8,191
ext. citations6.7
avg, IF6.09
L-index

#	Paper	IF	Citations
155	Transformation of Oxygenate Components of Biomass Pyrolysis Oil on a HZSM-5 Zeolite. I. Alcohols and Phenols. <i>Industrial & Engineering Chemistry Research</i> , 2004 , 43, 2610-2618	3.9	366
154	Transformation of Oxygenate Components of Biomass Pyrolysis Oil on a HZSM-5 Zeolite. II. Aldehydes, Ketones, and Acids. <i>Industrial & Engineering Chemistry Research</i> , 2004 , 43, 2619-2626	3.9	325
153	Monitoring Ni 0 and coke evolution during the deactivation of a Ni/La 2 O 3 🖪 2 O 3 catalyst in ethanol steam reforming in a fluidized bed. <i>Journal of Catalysis</i> , 2015 , 331, 181-192	7.3	168
152	Deactivating species in the transformation of crude bio-oil with methanol into hydrocarbons on a HZSM-5 catalyst. <i>Journal of Catalysis</i> , 2012 , 285, 304-314	7.3	154
151	Coke deactivation of Ni and Co catalysts in ethanol steam reforming at mild temperatures in a fluidized bed reactor. <i>International Journal of Hydrogen Energy</i> , 2014 , 39, 12586-12596	6.7	152
150	Role of acidity and microporous structure in alternative catalysts for the transformation of methanol into olefins. <i>Applied Catalysis A: General</i> , 2005 , 283, 197-207	5.1	150
149	Selective Production of Aromatics by Crude Bio-oil Valorization with a Nickel-Modified HZSM-5 Zeolite Catalyst. <i>Energy & Double Catalyst. Energy & </i>	4.1	149
148	Deactivation of a HZSM-5 Zeolite Catalyst in the Transformation of the Aqueous Fraction of Biomass Pyrolysis Oil into Hydrocarbons. <i>Energy & Double Solution</i> 18, 1640-1647	4.1	148
147	Coke formation and deactivation during catalytic reforming of biomass and waste pyrolysis products: A review. <i>Renewable and Sustainable Energy Reviews</i> , 2020 , 119, 109600	16.2	136
146	Selective production of olefins from bioethanol on HZSM-5 zeolite catalysts treated with NaOH. <i>Applied Catalysis B: Environmental</i> , 2010 , 97, 299-306	21.8	121
145	Undesired components in the transformation of biomass pyrolysis oil into hydrocarbons on an HZSM-5 zeolite catalyst. <i>Journal of Chemical Technology and Biotechnology</i> , 2005 , 80, 1244-1251	3.5	121
144	Hydrothermally stable HZSM-5 zeolite catalysts for the transformation of crude bio-oil into hydrocarbons. <i>Applied Catalysis B: Environmental</i> , 2010 , 100, 318-327	21.8	115
143	Reaction pathway for ethanol steam reforming on a Ni/SiO 2 catalyst including coke formation. <i>International Journal of Hydrogen Energy</i> , 2014 , 39, 18820-18834	6.7	111
142	Olefin Production by Catalytic Transformation of Crude Bio-Oil in a Two-Step Process. <i>Industrial & Engineering Chemistry Research</i> , 2010 , 49, 123-131	3.9	111
141	Kinetic Description of the Catalytic Pyrolysis of Biomass in a Conical Spouted Bed Reactor. <i>Energy & Energy Fuels</i> , 2005 , 19, 765-774	4.1	110
140	Catalyst Deactivation by Coke in the Transformation of Aqueous Ethanol into Hydrocarbons. Kinetic Modeling and Acidity Deterioration of the Catalyst. <i>Industrial & Deterioration Chemistry Research</i> , 2002 , 41, 4216-4224	3.9	107
139	Operating conditions for attenuating Ni/La2O3Al2O3 catalyst deactivation in the steam reforming of bio-oil aqueous fraction. <i>Fuel Processing Technology</i> , 2013 , 115, 222-232	7.2	105

(2019-2014)

138	frect of calcination/reduction conditions of Ni/La2O3A(2O3 catalyst on its activity and stability for hydrogen production by steam reforming of raw bio-oil/ethanol. <i>Applied Catalysis B: Environmental</i> , 2014 , 147, 402-410	21.8	104
137	Differences among the deactivation pathway of HZSM-5 zeolite and SAPO-34 in the transformation of ethylene or 1-butene to propylene. <i>Microporous and Mesoporous Materials</i> , 2014 , 195, 284-293	5.3	102
136	Kinetics of the irreversible deactivation of the HZSM-5 catalyst in the MTO process. <i>Chemical Engineering Science</i> , 2003 , 58, 5239-5249	4.4	100
135	Catalysts of Ni/FAl2O3 and Ni/La2O3-Al2O3 for hydrogen production by steam reforming of bio-oil aqueous fraction with pyrolytic lignin retention. <i>International Journal of Hydrogen Energy</i> , 2013 , 38, 1307-1318	6.7	99
134	Coking and sintering progress of a Ni supported catalyst in the steam reforming of biomass pyrolysis volatiles. <i>Applied Catalysis B: Environmental</i> , 2018 , 233, 289-300	21.8	93
133	Deposition and Characteristics of Coke over a H-ZSM5 Zeolite-Based Catalyst in the MTG Process. <i>Industrial & Engineering Chemistry Research</i> , 1996 , 35, 3991-3998	3.9	92
132	Deactivation of a CuOInOIAl2O3/EAl2O3 Catalyst in the Synthesis of Dimethyl Ether. <i>Industrial & Engineering Chemistry Research</i> , 2008 , 47, 2238-2247	3.9	89
131	Kinetic Modeling of Methanol Transformation into Olefins on a SAPO-34 Catalyst. <i>Industrial & Engineering Chemistry Research</i> , 2000 , 39, 292-300	3.9	88
130	Hydrothermal stability of HZSM-5 catalysts modified with Ni for the transformation of bioethanol into hydrocarbons. <i>Fuel</i> , 2010 , 89, 3365-3372	7.1	86
129	Effect of operating conditions on the coke nature and HZSM-5 catalysts deactivation in the transformation of crude bio-oil into hydrocarbons. <i>Catalysis Today</i> , 2012 , 195, 106-113	5.3	85
128	Study of operating variables in the transformation of aqueous ethanol into hydrocarbons on an HZSM-5 zeolite. <i>Journal of Chemical Technology and Biotechnology</i> , 2002 , 77, 211-216	3.5	85
127	Role of water in the kinetic modeling of catalyst deactivation in the MTG process. <i>AICHE Journal</i> , 2002 , 48, 1561-1571	3.6	82
126	Modified HZSM-5 zeolites for intensifying propylene production in the transformation of 1-butene. <i>Chemical Engineering Journal</i> , 2014 , 251, 80-91	14.7	80
125	Attenuation of Catalyst Deactivation by Cofeeding Methanol for Enhancing the Valorisation of Crude Bio-oil. <i>Energy & Dog, Energy & Energy</i>	4.1	80
124	Effect of Si/Al ratio and of acidity of H-ZSM5 zeolites on the primary products of methanol to gasoline conversion. <i>Journal of Chemical Technology and Biotechnology</i> , 1996 , 66, 183-191	3.5	77
123	Steam reforming of raw bio-oil over Ni/La2O3-Al2O3: Influence of temperature on product yields and catalyst deactivation. <i>Fuel</i> , 2018 , 216, 463-474	7.1	73
122	Catalyst Equilibration for Transformation of Methanol into Hydrocarbons by Reaction Regeneration Cycles. <i>Industrial & Engineering Chemistry Research</i> , 1996 , 35, 2177-2182	3.9	73
121	Recent research progress on bio-oil conversion into bio-fuels and raw chemicals: a review. <i>Journal of Chemical Technology and Biotechnology</i> , 2019 , 94, 670-689	3.5	70

120	Kinetic model for the reaction of DME to olefins over a HZSM-5 zeolite catalyst. <i>Chemical Engineering Journal</i> , 2016 , 302, 801-810	14.7	70
119	Relationship between surface acidity and activity of catalysts in the transformation of methanol into hydrocarbons. <i>Journal of Chemical Technology and Biotechnology</i> , 1996 , 65, 186-192	3.5	66
118	Role of oxygenates and effect of operating conditions in the deactivation of a Ni supported catalyst during the steam reforming of bio-oil. <i>Green Chemistry</i> , 2017 , 19, 4315-4333	10	65
117	Deactivation dynamics of a Ni supported catalyst during the steam reforming of volatiles from waste polyethylene pyrolysis. <i>Applied Catalysis B: Environmental</i> , 2017 , 209, 554-565	21.8	64
116	Kinetic modelling for the transformation of bioethanol into olefins on a hydrothermally stable NiBZSM-5 catalyst considering the deactivation by coke. <i>Chemical Engineering Journal</i> , 2011 , 167, 262-2	74 .7	64
115	Role of Coke Characteristics in the Regeneration of a Catalyst for the MTG Process. <i>Industrial & Engineering Chemistry Research</i> , 1997 , 36, 60-66	3.9	63
114	Catalyst deactivation by coking in the MTG process in fixed and fluidized bed reactors. <i>Catalysis Today</i> , 1997 , 37, 239-248	5.3	63
113	Role of Reaction-Medium Water on the Acidity Deterioration of a HZSM-5 Zeolite. <i>Industrial & Engineering Chemistry Research</i> , 2004 , 43, 5042-5048	3.9	63
112	Deactivation by coke of a catalyst based on a SAPO-34 in the transformation of methanol into olefins. <i>Journal of Chemical Technology and Biotechnology</i> , 1999 , 74, 315-321	3.5	61
111	Steam Reforming of Raw Bio-oil in a Fluidized Bed Reactor with Prior Separation of Pyrolytic Lignin. <i>Energy & Energy & </i>	4.1	60
110	Kinetics of Methanol Transformation into Hydrocarbons on a HZSM-5 Zeolite Catalyst at High Temperature (400B50 °C). <i>Industrial & Engineering Chemistry Research</i> , 2010 , 49, 12371-12378	3.9	60
109	Effect of Cofeeding Butane with Methanol on the Deactivation by Coke of a HZSM-5 Zeolite Catalyst. <i>Industrial & Engineering Chemistry Research</i> , 2011 , 50, 9980-9988	3.9	60
108	Biomass to hydrogen-rich gas via steam reforming of raw bio-oil over Ni/La2O3-Al2O3 catalyst: Effect of space-time and steam-to-carbon ratio. <i>Fuel</i> , 2018 , 216, 445-455	7.1	59
107	Concentration-Dependent Kinetic Model for Catalyst Deactivation in the MTG Process. <i>Industrial & Engineering Chemistry Research</i> , 1996 , 35, 81-89	3.9	59
106	Kinetic Modeling of the Methanol-to-Olefins Process on a Silicoaluminophosphate (SAPO-18) Catalyst by Considering Deactivation and the Formation of Individual Olefins. <i>Industrial & Engineering Chemistry Research</i> , 2007 , 46, 1981-1989	3.9	58
105	Kinetic Modelling of the Transformation of Aqueous Ethanol into Hydrocarbons on a HZSM-5 Zeolite. <i>Industrial & Description of Engineering Chemistry Research</i> , 2001 , 40, 3467-3474	3.9	57
104	Effect of nickel incorporation on the acidity and stability of HZSM-5 zeolite in the MTO process. <i>Catalysis Today</i> , 2005 , 106, 118-122	5.3	56
103	Improving the DME steam reforming catalyst by alkaline treatment of the HZSM-5 zeolite. <i>Applied Catalysis B: Environmental</i> , 2013 , 130-131, 73-83	21.8	52

(2014-2010)

102	Kinetic Model for the Transformation of Bioethanol into Olefins over a HZSM-5 Zeolite Treated with Alkali. <i>Industrial & Engineering Chemistry Research</i> , 2010 , 49, 10836-10844	3.9	48
101	Coke Aging and Its Incidence on Catalyst Regeneration. <i>Industrial & Engineering Chemistry Research</i> , 2003 , 42, 3914-3921	3.9	48
100	Deactivation kinetics for the conversion of dimethyl ether to olefins over a HZSM-5 zeolite catalyst. <i>Chemical Engineering Journal</i> , 2017 , 311, 367-377	14.7	46
99	Optimum operating conditions in ethanol steam reforming over a Ni/La2O3-Al2O3 catalyst in a fluidized bed reactor. <i>Fuel Processing Technology</i> , 2018 , 169, 207-216	7.2	46
98	Thermodynamic comparison between bio-oil and ethanol steam reforming. <i>International Journal of Hydrogen Energy</i> , 2015 , 40, 15963-15971	6.7	44
97	Origin and Nature of Coke in Ethanol Steam Reforming and Its Role in Deactivation of Ni/La2O3Al2O3 Catalyst. <i>Industrial & Engineering Chemistry Research</i> , 2019 , 58, 14736-14751	3.9	44
96	Reaction scheme and kinetic modelling for the MTO process over a SAPO-18 catalyst. <i>Catalysis Today</i> , 2005 , 106, 112-117	5.3	43
95	Regeneration of NiAl2O4 spinel type catalysts used in the reforming of raw bio-oil. <i>Applied Catalysis B: Environmental</i> , 2018 , 237, 353-365	21.8	42
94	Synergies in the production of olefins by combined cracking of n-butane and methanol on a HZSM-5 zeolite catalyst. <i>Chemical Engineering Journal</i> , 2010 , 160, 760-769	14.7	40
93	Isotherms of chemical adsorption of bases on solid catalysts for acidity measurement. <i>Journal of Chemical Technology and Biotechnology</i> , 1994 , 60, 141-146	3.5	40
92	Controlling coke deactivation and cracking selectivity of MFI zeolite by H3PO4 or KOH modification. <i>Applied Catalysis A: General</i> , 2015 , 505, 105-115	5.1	38
91	Olefin production by cofeeding methanol and n-butane: Kinetic modeling considering the deactivation of HZSM-5 zeolite. <i>AICHE Journal</i> , 2011 , 57, 2841-2853	3.6	38
90	Kinetic Modeling ofn-Butane Cracking on HZSM-5 Zeolite Catalyst. <i>Industrial & Engineering Chemistry Research</i> , 2010 , 49, 8415-8423	3.9	38
89	Initiation Step and Reactive Intermediates in the Transformation of Methanol into Olefins over SAPO-18 Catalyst. <i>Industrial & Engineering Chemistry Research</i> , 2005 , 44, 7279-7286	3.9	37
88	Regeneration of a catalyst based on a SAPO-34 used in the transformation of methanol into olefins. Journal of Chemical Technology and Biotechnology, 1999 , 74, 1082-1088	3.5	37
87	Compositional insights and valorization pathways for carbonaceous material deposited during bio-oil thermal treatment. <i>ChemSusChem</i> , 2014 , 7, 2597-608	8.3	36
86	Upgrading of Bio-Oil in a Continuous Process with Dolomite Catalyst. <i>Energy & amp; Fuels</i> , 2014 , 28, 641	946428	3 35
85	Stability of CuZnOAl2O3/HZSM-5 and CuFe2O4/HZSM-5 catalysts in dimethyl ether steam reforming operating in reactionDegeneration cycles. <i>Fuel Processing Technology</i> , 2014 , 126, 145-154	7.2	35

84	Catalyst discrimination for olefin production by coupled methanol/n-butane cracking. <i>Applied Catalysis A: General</i> , 2010 , 383, 202-210	5.1	35
83	Cost-effective upgrading of biomass pyrolysis oil using activated dolomite as a basic catalyst. <i>Fuel Processing Technology</i> , 2019 , 195, 106142	7.2	34
82	Simultaneous modeling of the kinetics for n-pentane cracking and the deactivation of a HZSM-5 based catalyst. <i>Chemical Engineering Journal</i> , 2018 , 331, 818-830	14.7	34
81	Modifications in the HZSM-5 zeolite for the selective transformation of ethylene into propylene. <i>Applied Catalysis A: General</i> , 2014 , 479, 17-25	5.1	34
80	Causes of deactivation of bifunctional catalysts made up of CuO-ZnO-Al2O3 and desilicated HZSM-5 zeolite in DME steam reforming. <i>Applied Catalysis A: General</i> , 2014 , 483, 76-84	5.1	34
79	Spatial Distribution of Zeolite ZSM-5 within Catalyst Bodies Affects Selectivity and Stability of Methanol-to-Hydrocarbons Conversion. <i>ChemCatChem</i> , 2013 , 5, 2827-2831	5.2	34
78	Steam Reforming of the Bio-Oil Aqueous Fraction in a Fluidized Bed Reactor with in Situ CO2 Capture. <i>Industrial & Discourse amp; Engineering Chemistry Research</i> , 2013 , 52, 17087-17098	3.9	34
77	Calculation of the kinetics of deactivation by coke in an integral reactor for a triangular scheme reaction. <i>Chemical Engineering Science</i> , 1993 , 48, 1077-1087	4.4	34
76	Acidity deterioration and coke deposition in a HZSM5 zeolite in the MTG process. <i>Studies in Surface Science and Catalysis</i> , 1994 , 88, 567-572	1.8	33
75	Reproducible performance of a Ni/La 2 O 3 🔊 2 O 3 catalyst in ethanol steam reforming under reaction Egeneration cycles. <i>Fuel Processing Technology</i> , 2016 , 152, 215-222	7.2	32
74	Kinetic Model for the Transformation of 1-Butene on a K-Modified HZSM-5 Catalyst. <i>Industrial & Engineering Chemistry Research</i> , 2014 , 53, 10599-10607	3.9	32
73	Kinetic behaviour of catalysts with different CuO-ZnO-Al2O3 metallic function compositions in DME steam reforming in a fluidized bed. <i>Applied Catalysis B: Environmental</i> , 2013 , 142-143, 315-322	21.8	30
72	Effect of combining metallic and acid functions in CZA/HZSM-5 desilicated zeolite catalysts on the DME steam reforming in a fluidized bed. <i>International Journal of Hydrogen Energy</i> , 2013 , 38, 10019-100.	28 ^{.7}	30
71	ROLE OF WATER IN THE KINETIC MODELING OF METHANOL TRANSFORMATION INTO HYDROCARBONS ON HZSM-5 ZEOLITE. <i>Chemical Engineering Communications</i> , 2004 , 191, 944-967	2.2	30
70	Hydrogen production by steam reforming of bio-oil/bio-ethanol mixtures in a continuous thermal-catalytic process. <i>International Journal of Hydrogen Energy</i> , 2014 , 39, 6889-6898	6.7	29
69	Intensifying Propylene Production by 1-Butene Transformation on a K Modified HZSM-5 Zeolite-Catalyst. <i>Industrial & Engineering Chemistry Research</i> , 2014 , 53, 4614-4622	3.9	29
68	Effect of Operating Conditions on Dimethyl Ether Steam Reforming over a CuFe2O4/EAl2O3 Bifunctional Catalyst. <i>Industrial & Engineering Chemistry Research</i> , 2015 , 54, 9722-9732	3.9	28
67	Calculation of the kinetics of deactivation by coke of a silica-alumina catalyst in the dehydration of 2-ethylhexanol. <i>Industrial & Engineering Chemistry Research</i> , 1993 , 32, 458-465	3.9	27

66	Aqueous-phase reforming of bio-oil aqueous fraction over nickel-based catalysts. <i>International Journal of Hydrogen Energy</i> , 2019 , 44, 13157-13168	6.7	25
65	Comparison of Ni and Co Catalysts for Ethanol Steam Reforming in a Fluidized Bed Reactor. <i>Catalysis Letters</i> , 2014 , 144, 1134-1143	2.8	25
64	Catalyst reactivation kinetics for methanol transformation into hydrocarbons. Expressions for designing reaction designing reaction designing reaction. <i>Chemical Engineering Science</i> , 2001 , 56, 5059-5071	4.4	25
63	Acidity, Surface Species, and Mechanism of Methanol Transformation into Olefins on a SAPO-34. <i>Industrial & District Amp; Engineering Chemistry Research</i> , 1998 , 37, 2336-2340	3.9	25
62	Temperature Programmed Oxidation Coupled with In Situ Techniques Reveal the Nature and Location of Coke Deposited on a Ni/La2O3-Al2O3 Catalyst in the Steam Reforming of Bio-oil. <i>ChemCatChem</i> , 2018 , 10, 2311-2321	5.2	24
61	Effect of phenols extraction on the behavior of Ni-spinel derived catalyst for raw bio-oil steam reforming. <i>International Journal of Hydrogen Energy</i> , 2019 , 44, 12593-12603	6.7	24
60	Selective dealumination of HZSM-5 zeolite boosts propylene by modifying 1-butene cracking pathway. <i>Applied Catalysis A: General</i> , 2017 , 543, 1-9	5.1	23
59	MTG fluidized bed reactorflegenerator unit with catalyst circulation: process simulation and operation of an experimental setup. <i>Chemical Engineering Science</i> , 2000 , 55, 3223-3235	4.4	23
58	Kinetic model of the MTG process taking into account the catalyst deactivation. Reactor simulation. <i>Chemical Engineering Science</i> , 1996 , 51, 3001-3006	4.4	23
57	Kinetic model considering catalyst deactivation for the steam reforming of bio-oil over Ni/La2O3-Al2O3. <i>Chemical Engineering Journal</i> , 2018 , 332, 192-204	14.7	22
56	Comparison of Noble Metal- and Copper-Based Catalysts for the Step of Methanol Steam Reforming in the Dimethyl Ether Steam Reforming Process. <i>Industrial & Dimethyl Ether Steam Research</i> , 2016 , 55, 3546-3555	3.9	22
55	Deactivation and acidity deterioration of a silica/alumina catalyst in the isomerization of cis-butene. <i>Industrial & Engineering Chemistry Research</i> , 1993 , 32, 588-593	3.9	22
54	Effect of Operating Conditions on Dimethyl Ether Steam Reforming in a Fluidized Bed Reactor with a CuOInOIAl2O3 and Desilicated ZSM-5 Zeolite Bifunctional Catalyst. <i>Industrial & Desilicated Chemistry Research</i> , 2014 , 53, 3462-3471	3.9	21
53	Deactivation kinetics of a HZSM-5 zeolite catalyst treated with alkali for the transformation of bio-ethanol into hydrocarbons. <i>AICHE Journal</i> , 2012 , 58, 526-537	3.6	21
52	Kinetic modelling of methylcyclohexane ring-opening over a HZSM-5 zeolite catalyst. <i>Chemical Engineering Journal</i> , 2008 , 140, 287-295	14.7	21
51	Behavior of a CuFe2O4/EAl2O3 Catalyst for the Steam Reforming of Dimethyl Ether in Reaction-Regeneration Cycles. <i>Industrial & Engineering Chemistry Research</i> , 2015 , 54, 11285-11294	3.9	20
50	Kinetics of the steam reforming of dimethyl ether over CuFe2O4/EAl2O3. <i>Chemical Engineering Journal</i> , 2016 , 306, 401-412	14.7	20
49	Oxidative Steam Reforming of Raw Bio-Oil over Supported and Bulk Ni Catalysts for Hydrogen Production. <i>Catalysts</i> , 2018 , 8, 322	4	20

48	Integration of Thermal Treatment and Catalytic Transformation for Upgrading Biomass Pyrolysis Oil. <i>International Journal of Chemical Reactor Engineering</i> , 2007 , 5,	1.2	20
47	Study of the preparation and composition of the metallic function for the selective hydrogenation of CO2 to gasoline over bifunctional catalysts. <i>Journal of Chemical Technology and Biotechnology</i> , 2003 , 78, 161-166	3.5	20
46	Comparison of Ni Based and Rh Based Catalyst Performance in the Oxidative Steam Reforming of Raw Bio-Oil. <i>Energy & Discourt Steam Reforming of Puels</i> , 2017, 31, 7147-7156	4.1	18
45	Reaction conditions effect and pathways in the oxidative steam reforming of raw bio-oil on a Rh/CeO2-ZrO2 catalyst in a fluidized bed reactor. <i>International Journal of Hydrogen Energy</i> , 2017 , 42, 29175-29185	6.7	18
44	On the dynamics and reversibility of the deactivation of a Rh/CeO2ZrO2 catalyst in raw bio-oil steam reforming. <i>International Journal of Hydrogen Energy</i> , 2019 , 44, 2620-2632	6.7	17
43	Role of Shape Selectivity and Catalyst Acidity in the Transformation of Chloromethane into Light Olefins. <i>Industrial & Engineering Chemistry Research</i> , 2015 , 54, 7822-7832	3.9	16
42	Kinetic Behavior of the SAPO-18 Catalyst in the Transformation of Methanol into Olefins. <i>Industrial & Engineering Chemistry Research</i> , 2005 , 44, 6605-6614	3.9	16
41	SAPO-18 and SAPO-34 catalysts for propylene production from the oligomerization-cracking of ethylene or 1-butene. <i>Applied Catalysis A: General</i> , 2017 , 547, 176-182	5.1	15
40	Conversion of syngas to liquid hydrocarbons over a two-component (Cr2O3@nO and ZSM-5 zeolite) catalyst:. <i>Chemical Engineering Science</i> , 2000 , 55, 1845-1855	4.4	15
39	Dual catalyst-sorbent role of dolomite in the steam reforming of raw bio-oil for producing H2-rich syngas. <i>Fuel Processing Technology</i> , 2020 , 200, 106316	7.2	15
38	Development of a bifunctional catalyst for dimethyl ether steam reforming with CuFe2O4 spinel as the metallic function. <i>Journal of Industrial and Engineering Chemistry</i> , 2016 , 36, 169-179	6.3	14
37	COKE COMBUSTION AND REACTIVATION KINETICS OF A ZSM-5 ZEOLITE BASED CATALYST USED FOR THE TRANSFORMATION OF METHANOL INTO HYDROCARBONS. <i>Chemical Engineering Communications</i> , 1999 , 176, 43-63	2.2	14
36	Stability of a Rh/CeO2\(\mathbb{Z}\)rO2 Catalyst in the Oxidative Steam Reforming of Raw Bio-oil. <i>Energy & amp; Fuels,</i> 2018 , 32, 3588-3598	4.1	13
35	The Role of Zeolite Acidity in Coupled Toluene Hydrogenation and Ring Opening in One and Two Steps. <i>Industrial & Engineering Chemistry Research</i> , 2008 , 47, 665-671	3.9	13
34	ReactionEegeneration cycles in the isomerization of cis-butene and calculation of the reactivation kinetics of a silicaElumina catalyst. <i>Chemical Engineering Science</i> , 1993 , 48, 2741-2752	4.4	13
33	Deactivation of Ni spinel derived catalyst during the oxidative steam reforming of raw bio-oil. <i>Fuel</i> , 2020 , 276, 117995	7.1	12
32	Reactivation of the HZSM-5 zeolite-based catalyst used in the MTG process. <i>AICHE Journal</i> , 1997 , 43, 1551-1558	3.6	12
31	MTG Process in a Fixed-Bed Reactor. Operation and Simulation of a Pseudoadiabatic Experimental Unit. <i>Industrial & Description of the Experimental Section 2001</i> , 40, 6087-6098	3.9	12

30	MTG Process in a Fluidized Bed with Catalyst Circulation: Operation and Simulation of an Experimental Unit. <i>Industrial & Experimental Unit. Industrial & Industr</i>	3.9	11
29	COMPOSITION AND QUALITY OF THE GASOLINE OBTAINED FROM SYNGAS ON Cr2O3-ZnO/ZSM5 CATALYSTS. <i>Chemical Engineering Communications</i> , 1999 , 174, 1-19	2.2	10
28	Selective kinetic deactivation model for a triangular reaction scheme. <i>Chemical Engineering Science</i> , 1993 , 48, 2273-2282	4.4	10
27	Strategies for maximizing the bio-oil valorization by catalytic transformation. <i>Journal of Cleaner Production</i> , 2015 , 88, 345-348	10.3	9
26	Kinetic modelling for selective deactivation in the skeletal isomerization of n-butenes. <i>Chemical Engineering Science</i> , 1997 , 52, 2829-2835	4.4	9
25	A comprehensive approach for designing different configurations of isothermal reactors with fast catalyst deactivation. <i>Chemical Engineering Journal</i> , 2020 , 379, 122260	14.7	9
24	Feasibility of online pre-reforming step with dolomite for improving Ni spinel catalyst stability in the steam reforming of raw bio-oil. <i>Fuel Processing Technology</i> , 2021 , 215, 106769	7.2	8
23	Global vision from the thermodynamics of the effect of the bio-oil composition and the reforming strategies in the H2 production and the energy requirement. <i>Energy Conversion and Management</i> , 2021 , 239, 114181	10.6	8
22	Effect of reaction conditions on the deactivation by coke of a NiAl2O4 spinel derived catalyst in the steam reforming of bio-oil. <i>Applied Catalysis B: Environmental</i> , 2021 , 297, 120445	21.8	8
21	Kinetic behaviour of commercial catalysts for methane reforming in ethanol steam reforming process. <i>Journal of Energy Chemistry</i> , 2014 , 23, 639-644	12	7
20	Joint Transformation of Methanol and n-Butane into Olefins on an HZSM-5 Zeolite Catalyst in Reaction Regeneration Cycles. <i>Industrial & Engineering Chemistry Research</i> , 2012 , 51, 13073-13084	3.9	7
19	Consideration of the activity distribution using the population balance theory for designing a dual fluidized bed reactor-regenerator system. Application to the MTO process. <i>Chemical Engineering Journal</i> , 2021 , 405, 126448	14.7	7
18	Kinetic Model for the Conversion of Chloromethane into Hydrocarbons over a HZSM-5 Zeolite Catalyst. <i>Industrial & Engineering Chemistry Research</i> , 2018 , 57, 908-919	3.9	6
17	Simulation and Optimization of Methanol Transformation into Hydrocarbons in an Isothermal Fixed-Bed Reactor under Reaction R egeneration Cycles. <i>Industrial & Engineering Chemistry Research</i> , 1998 , 37, 2383-2390	3.9	6
16	Optimization of temperature-time sequences in reaction-regeneration cycles. Application to the isomerization of cis-butene. <i>Industrial & Engineering Chemistry Research</i> , 1993 , 32, 2542-2547	3.9	6
15	Role of zeolite properties in bio-oil deoxygenation and hydrocarbons production by catalytic cracking. <i>Fuel Processing Technology</i> , 2022 , 227, 107130	7.2	6
14	Study of the regeneration stage of the MTG process in a pseudoadiabatic fixed bed reactor. <i>Chemical Engineering Journal</i> , 2003 , 92, 141-150	14.7	5
13	Insights into the Reaction Routes for H Formation in the Ethanol Steam Reforming on a Catalyst Derived from NiAlO Spinel. <i>Energy & Derived From NiAlO Spinel</i> . <i>Energy & Derived From NiAlO Spinel</i> .	4.1	5

12	Deactivation and Regeneration of a Chlorinated Alumina Catalyst Used in the Skeletal Isomerization of n-Butenes. <i>Industrial & Engineering Chemistry Research</i> , 1997 , 36, 5189-5195	3.9	4
11	Analysis of kinetic models of the methanol-to-gasoline (MTG) process in an integral reactor. <i>The Chemical Engineering Journal and the Biochemical Engineering Journal</i> , 1996 , 63, 45-51		4
10	Temperature vs. time sequences to palliate deactivation in parallel and in series-parallel with the main reaction: parametric study. <i>The Chemical Engineering Journal</i> , 1993 , 51, 167-176		4
9	Deactivation Kinetic Model in Catalytic PolymerizationsTaking into Account the Initiation Step. <i>Industrial & Engineering Chemistry Research</i> , 1996 , 35, 62-69	3.9	3
8	Spectro-kinetics of the methanol to hydrocarbons reaction combining online product analysis with UVII is and FTIR spectroscopies throughout the space time evolution. <i>Journal of Catalysis</i> , 2022 , 408, 115-127	7.3	3
7	The role of shape selectivity and intrinsic selectivity of acidic sites of the catalysts in the skeletal isomerization of n-butenes. <i>Journal of Chemical Technology and Biotechnology</i> , 1998 , 71, 6-14	3.5	2
6	Development of Alternative Catalysts Based on HZSM-5 Zeolite for the BTO Process. <i>International Journal of Chemical Reactor Engineering</i> , 2007 , 5,	1.2	2
5	Influence of HZSM-5-based catalyst deactivation on the performance of different reactor configurations for the conversion of bioethanol into hydrocarbons. <i>Fuel</i> , 2021 , 302, 121061	7.1	2
4	Relationship between surface acidity and activity of catalysts in the transformation of methanol into hydrocarbons 1996 , 65, 186		2
3	Unveiling the deactivation by coke of NiAl2O4 spinel derived catalysts in the bio-oil steam reforming: Role of individual oxygenates. <i>Fuel</i> , 2022 , 321, 124009	7.1	1
2	Stability of a NiAl2O4 Derived Catalyst in the Ethanol Steam Reforming in Reaction-Regeneration Cycles: Effect of Reduction Temperature. <i>Catalysts</i> , 2022 , 12, 550	4	O
1	Streamlining the estimation of kinetic parameters using periodic reaction conditions: The methanol-to-hydrocarbon reaction as a case study. <i>Chemical Engineering Journal</i> . 2022 , 435, 134800	14.7	