
Rodrigo Polimeni Constantin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4845718/publications.pdf Version: 2024-02-01

RODRIGO POLIMENI

#	Article	IF	CITATIONS
1	<i>p</i> -Methoxycinnamic acid disturbs cellular respiration and increases the lignification of <i>Euphorbia heterophylla</i> roots. Plant Biosystems, 2023, 157, 12-23.	1.6	2
2	Inhibiting tricin biosynthesis improves maize lignocellulose saccharification. Plant Physiology and Biochemistry, 2022, 178, 12-19.	5.8	2
3	Titanium Dioxide Nanoparticles Induce Root Growth Inhibition in Soybean Due to Physical Damages. Water, Air, and Soil Pollution, 2021, 232, 1.	2.4	14
4	The photosensitiser azure A disrupts mitochondrial bioenergetics through intrinsic and photodynamic effects. Toxicology, 2021, 455, 152766.	4.2	5
5	Cadmium uncouples mitochondrial oxidative phosphorylation and induces oxidative cellular stress in soybean roots. Environmental Science and Pollution Research, 2021, 28, 67711-67723.	5.3	8
6	Kinetic mechanisms by which nickel alters the calcium (Ca2+) transport in intact rat liver. Journal of Biological Inorganic Chemistry, 2021, 26, 641-658.	2.6	2
7	The photodynamic and intrinsic effects of Azure B on mitochondrial bioenergetics and the consequences of its intrinsic effects on hepatic energy metabolism. Photodiagnosis and Photodynamic Therapy, 2021, 35, 102446.	2.6	1
8	Morphogenic responses and biochemical alterations induced by the cover crop Urochloa ruziziensis and its component protodioscin in weed species. Plant Physiology and Biochemistry, 2021, 166, 857-873.	5.8	3
9	Association between metabolic syndrome, hepatic steatosis, and testosterone deficiency: evidences from studies with men and rodents. Aging Male, 2020, 23, 1296-1315.	1.9	13
10	Biosynthesis and metabolic actions of simple phenolic acids in plants. Phytochemistry Reviews, 2020, 19, 865-906.	6.5	182
11	Differential Effects of Exogenous Resveratrol on the Growth and Energy Metabolism of <i>Zea mays</i> and the Weed <i>Ipomoea grandifolia</i> . Journal of Agricultural and Food Chemistry, 2020, 68, 3006-3016.	5.2	5
12	The photodynamic and direct actions of methylene blue on mitochondrial energy metabolism: A balance of the useful and harmful effects of this photosensitizer. Free Radical Biology and Medicine, 2020, 153, 34-53.	2.9	25
13	The Role of Mitochondria in Sex-Dependent Differences in Hepatic Steatosis and Oxidative Stress in Response to Cafeteria Diet-Induced Obesity in Mice. Nutrients, 2019, 11, 1618.	4.1	4
14	The acute effects of citrus flavanones on the metabolism of glycogen and monosaccharides in the isolated perfused rat liver. Toxicology Letters, 2018, 291, 158-172.	0.8	13
15	Sex differences in the development of hepatic steatosis in cafeteria diet-induced obesity in young mice. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 2495-2509.	3.8	35
16	Cafeteria Diet Feeding in Young Rats Leads to Hepatic Steatosis and Increased Gluconeogenesis under Fatty Acids and Glucagon Influence. Nutrients, 2018, 10, 1571.	4.1	15
17	Molecular mechanisms of citrus flavanones on hepatic gluconeogenesis. Fìtoterapìâ, 2014, 92, 148-162.	2.2	39
18	Catabolism of amino acids in livers from cafeteria-fed rats. Molecular and Cellular Biochemistry, 2013, 373, 265-277.	3.1	15

Rodrigo Polimeni

#	Article	IF	CITATIONS
19	Citrus Flavanones Affect Hepatic Fatty Acid Oxidation in Rats by Acting as Prooxidant Agents. BioMed Research International, 2013, 2013, 1-12.	1.9	17
20	Metabolic effects of silibinin in the rat liver. Chemico-Biological Interactions, 2012, 195, 119-132.	4.0	61
21	Liver mitochondrial function and redox status in an experimental model of non-alcoholic fatty liver disease induced by monosodium l-glutamate in rats. Experimental and Molecular Pathology, 2011, 91, 687-694.	2.1	37
22	Treating maize plants with benzohydrazide increases saccharification of lignocellulose: A non-transgenic approach to improve cellulosic ethanol production. Biomass Conversion and Biorefinery, 0, , 1.	4.6	0