Francisco BarcelÃ³

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/484533/publications.pdf

Version: 2024-02-01

		172207	189595
50	4,438	29	50
papers	citations	h-index	g-index
55	55	55	5448
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	A Predictive Processing Account of Card Sorting: Fast Proactive and Reactive Frontoparietal Cortical Dynamics during Inference and Learning of Perceptual Categories. Journal of Cognitive Neuroscience, 2021, 33, 1636-1656.	1.1	12
2	Fast fronto-parietal cortical dynamics of conflict detection and context updating in a flanker task. Cognitive Neurodynamics, 2020, 14, 795-814.	2.3	7
3	Dynamic low frequency EEG phase synchronization patterns during proactive control of task switching. Neurolmage, 2019, 186, 70-82.	2.1	33
4	Multisubject Decomposition of Event-related Positivities in Cognitive Control: Tackling Age-related Changes in Reactive Control. Brain Topography, 2018, 31, 17-34.	0.8	24
5	An information theory account of late frontoparietal ERP positivities in cognitive control. Psychophysiology, 2018, 55, e12814.	1.2	54
6	Fast Neural Dynamics of Proactive Cognitive Control in a Task-Switching Analogue of the Wisconsin Card Sorting Test. Brain Topography, 2018, 31, 407-418.	0.8	10
7	Quantifying Contextual Information For Cognitive Control. Frontiers in Psychology, 2018, 9, 1693.	1.1	11
8	Functional Dissociation of Latency-Variable, Stimulus- and Response-Locked Target P3 Sub-components in Task-Switching. Frontiers in Human Neuroscience, 2018, 12, 60.	1.0	32
9	Contextually sensitive power changes across multiple frequency bands underpin cognitive control. Neurolmage, 2016, 132, 499-511.	2.1	75
10	A taxonomy of fronto-parietal P3-like positivities based on information theoretic models of cognitive control. International Journal of Psychophysiology, 2016, 108, 53-54.	0.5	0
11	<scp>EEG</scp> delta oscillations index inhibitory control of contextual novelty to both irrelevant distracters and relevant taskâ€switch cues. Psychophysiology, 2014, 51, 658-672.	1.2	33
12	A diffusion model analysis of developmental changes in children's task switching. Journal of Experimental Child Psychology, 2014, 126, 178-197.	0.7	18
13	Where is the bilingual advantage in task-switching?. Journal of Memory and Language, 2013, 69, 257-276.	1.1	122
14	Bilinguals Use Language-Control Brain Areas More Than Monolinguals to Perform Non-Linguistic Switching Tasks. PLoS ONE, 2013, 8, e73028.	1.1	53
15	A latent variable approach to executive control in healthy ageing. Brain and Cognition, 2012, 78, 284-299.	0.8	64
16	The Effects of Foreknowledge and Task-Set Shifting as Mirrored in Cue- and Target-Locked Event-Related Potentials. PLoS ONE, 2012, 7, e49486.	1.1	20
17	COMT and ANKK1 gene–gene interaction modulates contextual updating of mental representations. Neurolmage, 2011, 56, 1641-1647.	2.1	26
18	The time course of the asymmetrical "local―switch cost: Evidence from event-related potentials. Biological Psychology, 2011, 86, 210-218.	1.1	18

#	Article	IF	CITATIONS
19	Impaired preparatory re-mapping of stimulus–response associations and rule-implementation in schizophrenic patients—The role for differences in early processing. Biological Psychology, 2011, 87, 358-365.	1.1	15
20	Why are auditory novels distracting? Contrasting the roles of novelty, violation of expectation and stimulus change. Cognition, 2011, 119, 374-380.	1.1	111
21	The role of DAT1 gene on the rapid detection of task novelty. Neuropsychologia, 2010, 48, 4136-4141.	0.7	9
22	The role of the dopamine transporter DAT1 genotype on the neural correlates of cognitive flexibility. European Journal of Neuroscience, 2010, 31, 754-760.	1.2	58
23	Individual differences in aging and cognitive control modulate the neural indexes of context updating and maintenance during task switching. Cortex, 2010, 46, 434-450.	1.1	70
24	Dynamic Neuroplasticity after Human Prefrontal Cortex Damage. Neuron, 2010, 68, 401-408.	3.8	106
25	The emotional consequences of being distracted. Frontiers in Neuroscience, 2009, 3, 6-7.	1.4	2
26	Construct validity of the Trail Making Test: Role of task-switching, working memory, inhibition/interference control, and visuomotor abilities. Journal of the International Neuropsychological Society, 2009, 15, 438-450.	1.2	949
27	Updating sensory versus task representations during task-switching: Insights from cognitive brain potentials in humans. Neuropsychologia, 2009, 47, 1160-1172.	0.7	70
28	The Wisconsin Card Sorting Test and the cognitive assessment of prefrontal executive functions: A critical update. Brain and Cognition, 2009, 71, 437-451.	0.8	349
29	Decreased brain coordinated activity in autism spectrum disorders during executive tasks: Reduced long-range synchronization in the fronto-parietal networks. International Journal of Psychophysiology, 2009, 73, 341-349.	0.5	60
30	Theoretical sequelae of a chronic neglect and unawareness of prefrontotectal pathways in the human brain. Behavioral and Brain Sciences, 2007, 30, 83-85.	0.4	1
31	An Information-Theoretical Approach to Contextual Processing in the Human Brain: Evidence from Prefrontal Lesions. Cerebral Cortex, 2007, 17, i51-i60.	1.6	53
32	Trail Making Test in traumatic brain injury, schizophrenia, and normal ageing: Sample comparisons and normative data. Archives of Clinical Neuropsychology, 2007, 22, 433-447.	0.3	158
33	An information theoretical approach to task-switching: evidence from cognitive brain potentials in humans. Frontiers in Human Neuroscience, 2007, 1 , 13 .	1.0	46
34	Task Switching and Novelty Processing Activate a Common Neural Network for Cognitive Control. Journal of Cognitive Neuroscience, 2006, 18, 1734-1748.	1.1	221
35	Temporal kinetics of prefrontal modulation of the extrastriate cortex during visual attention. Cognitive, Affective and Behavioral Neuroscience, 2004, 4, 609-617.	1.0	42
36	Spatiotemporal brain dynamics during preparatory set shifting: MEG evidence. NeuroImage, 2004, 21, 687-695.	2.1	77

#	Article	IF	CITATIONS
37	The Madrid card sorting test (MCST): a task switching paradigm to study executive attention with event-related potentials. Brain Research Protocols, 2003, 11, 27-37.	1.7	102
38	Tidying up sensory stores with supraordinate representations. Behavioral and Brain Sciences, 2003, 26, 730-731.	0.4	0
39	Think differently: a brain orienting response to task novelty. NeuroReport, 2002, 13, 1887-1892.	0.6	241
40	Both random and perseverative errors underlie WCST deficits in prefrontal patients. Neuropsychologia, 2002, 40, 349-356.	0.7	245
41	Does the Wisconsin Card Sorting Test Measure Prefontral Function?. Spanish Journal of Psychology, 2001, 4, 79-100.	1.1	30
42	Attentional set shifting modulates the target P3b Response in the Wisconsin card sorting test. Neuropsychologia, 2000, 38, 1342-1355.	0.7	155
43	Prefrontal modulation of visual processing in humans. Nature Neuroscience, 2000, 3, 399-403.	7.1	403
44	Electrophysiological evidence of two different types of error in the Wisconsin Card Sorting Test. NeuroReport, 1999, 10, 1299-1303.	0.6	70
45	Non-frontal P3b-like activity evoked by the Wisconsin Card Sorting Test. NeuroReport, 1998, 9, 747-751.	0.6	35
46	Electrophysiological measures of cognition in biological psychiatry: some cautionary notes. International Journal of Neuroscience, 1997, 92, 219-240.	0.8	9
47	Event-related potentials during memorization of spatial locations in the auditory and visual modalities. Electroencephalography and Clinical Neurophysiology, 1997, 103, 257-267.	0.3	27
48	The Wisconsin Card Sorting Test and the assessment of frontal function: A validation study with event-related potentials. Neuropsychologia, 1997, 35, 399-408.	0.7	86
49	Sources and topography of supramodal effects of spatial attention in ERP. Brain Topography, 1997, 10, 9-22.	0.8	7
50	A psychophysiological inquiry into the nature of the Sokolovian orienting response comparator model: skin conductance and EEG data. Biological Psychology, 1995, 41, 147-166.	1.1	3