
## Mxolisi Shongwe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4844719/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Microstructure, tribological and oxidation behaviour of spark plasma sintered Ti-Ni-xTiCN composites. Journal of Alloys and Compounds, 2022, 890, 161857.                                                                                                                                                                         | 2.8 | 12        |
| 2  | Effect of silica concentration on degree of sintering of chromite-silica ladle well filler sand based<br>on South African raw materials. Journal of the Southern African Institute of Mining and Metallurgy,<br>2022, 122, 1-13.                                                                                                  | 0.1 | 1         |
| 3  | The effect of Cr additions and oxidation on densification, microstructure, phase constituents and mechanical properties of TiAlCr alloys produced by SPS. Materials Today: Proceedings, 2021, 38, 621-627.                                                                                                                        | 0.9 | 2         |
| 4  | Spark plasma sintering behavior of Ti-3Al-1Mo alloy. Materials Today: Proceedings, 2021, 38, 1121-1125.                                                                                                                                                                                                                           | 0.9 | 2         |
| 5  | Influence of ball milling parameters on the dispersion characteristics and structural integrity of<br>MWCNTs in nickel aluminide matrix powders. Particulate Science and Technology, 2021, 39, 298-311.                                                                                                                           | 1.1 | 5         |
| 6  | Investigation of Corrosion Response of Spark Plasma Sintered Ni-9Fe-22Cr-10Co Superalloy in Sulphuric Acid Environment. Journal of Bio- and Tribo-Corrosion, 2021, 7, 1.                                                                                                                                                          | 1.2 | 1         |
| 7  | Preliminary Assessment of Spark Plasma Sintered Nickel-Based Quaternary Superalloy. Metallography,<br>Microstructure, and Analysis, 2021, 10, 64-73.                                                                                                                                                                              | 0.5 | 1         |
| 8  | Synthesis and characterization of TiN nanoceramic reinforced Ti–7Al–1Mo composite produced by<br>spark plasma sintering. Materials Science & Engineering A: Structural Materials: Properties,<br>Microstructure and Processing, 2021, 807, 140904.                                                                                | 2.6 | 13        |
| 9  | Spark plasma sintering of titanium matrix composite—a review. International Journal of Advanced<br>Manufacturing Technology, 2021, 117, 2529-2544.                                                                                                                                                                                | 1.5 | 14        |
| 10 | Wet ball milling of niobium by using ethanol, determination of the crystallite size and microstructures. Scientific Reports, 2021, 11, 22422.                                                                                                                                                                                     | 1.6 | 6         |
| 11 | Influence of nanocrystalline nickel powder on oxidation resistance of spark plasma sintered<br>Ni-17Cr6.5Co1.2Mo6Al4W7.6Ta alloy. Journal of King Saud University, Engineering Sciences, 2020, 32,<br>198-204.                                                                                                                    | 1.2 | 11        |
| 12 | Effect of nickel addition on densification, microstructure and wear behaviour of spark plasma sintered CP-titanium. Materials Chemistry and Physics, 2020, 240, 122130.                                                                                                                                                           | 2.0 | 25        |
| 13 | The influence of heating rate on the microstructural evolutions and mechanical properties of spark<br>plasma sintered multi-walled carbon nanotubes reinforced NiAl intermetallic matrix composites.<br>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and<br>Processing, 2020, 773, 138869. | 2.6 | 5         |
| 14 | Improving mechanical and thermal properties of graphite–aluminium composite using Si, SiC and eggshell particles. Journal of Composite Materials, 2020, 54, 2365-2376.                                                                                                                                                            | 1.2 | 10        |
| 15 | Spark plasma sintering of Ti–Ni–TiCN composites: Microstructural characterization, densification<br>and mechanical properties. Journal of Alloys and Compounds, 2020, 848, 156559.                                                                                                                                                | 2.8 | 11        |
| 16 | Effect of sintering temperatures on the properties of in-situ copper-niobium-titanium di-boride composites. SN Applied Sciences, 2020, 2, 1.                                                                                                                                                                                      | 1.5 | 0         |
| 17 | Sintering behavior and alloying elements effects on the properties of CP-Titanium sintered using pulsed electric current. Materials Chemistry and Physics, 2020, 256, 123707.                                                                                                                                                     | 2.0 | 8         |
| 18 | Microstructure, Hardness, and Wear Assessment of Spark-Plasma-Sintered Ti-xAl-1Mo Alloy.<br>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2020, 51,<br>4033-4044.                                                                                                                        | 1.1 | 6         |

MXOLISI SHONGWE

| #  | Article                                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Effect of Nanocrystalline Nickel Powder and Co, Mo, Ta, and Al Additions on Isothermal Oxidation<br>Behavior of Ni–17Cr Alloy. Metallography, Microstructure, and Analysis, 2020, 9, 75-85.                                                 | 0.5 | 4         |
| 20 | Carbon nanotube-reinforced intermetallic matrix composites: processing challenges, consolidation,<br>and mechanical properties. International Journal of Advanced Manufacturing Technology, 2019, 104,<br>3803-3820.                        | 1.5 | 7         |
| 21 | Interdependence of carbon nanotubes agglomerations, its structural integrity and the mechanical properties of reinforced nickel aluminide composites. Journal of Alloys and Compounds, 2019, 803, 514-526.                                  | 2.8 | 8         |
| 22 | Spark Plasma Sintering Consolidation of Equi-Atomic TiAlMoSiW High Entropy Alloy. Procedia<br>Manufacturing, 2019, 35, 968-973.                                                                                                             | 1.9 | 2         |
| 23 | Synthesis, Optimization and Characterization of Silicon Carbide (SiC) from Rice Husk. Procedia Manufacturing, 2019, 35, 962-967.                                                                                                            | 1.9 | 19        |
| 24 | Mechanical properties and phase evolutions in heat-treated cast Al–Ni–Cu2O metal matrix composites.<br>Materials Research Express, 2019, 6, 0865i8.                                                                                         | 0.8 | 1         |
| 25 | Synthesis, microstructural and phase evolution in Ti–2Ni and Ti–10Ni binary alloys consolidated by spark plasma sintering technique. International Journal of Advanced Manufacturing Technology, 2019, 104, 1041-1049.                      | 1.5 | 18        |
| 26 | Spark plasma sintering of Ti-48Al intermetallic using elemental powder. International Journal of Advanced Manufacturing Technology, 2019, 103, 3025-3032.                                                                                   | 1.5 | 9         |
| 27 | The effect of silicon carbide on the mechanical and thermal behavior of spark plasma sintered silicon nitride ceramics with Al2O3 and Y2O3 additives. Materials Research Express, 2019, 6, 055019.                                          | 0.8 | Ο         |
| 28 | A study of nanocrystalline nickel powders developed via high-energy ball milling. International<br>Journal of Advanced Manufacturing Technology, 2019, 102, 3657-3665.                                                                      | 1.5 | 11        |
| 29 | Wear and corrosion studies of graphiteâ€aluminum composite reinforced with<br>micro/nanoâ€TiB <sub>2</sub> via spark plasma sintering. Materialwissenschaft Und Werkstofftechnik,<br>2019, 50, 126-139.                                     | 0.5 | 4         |
| 30 | Fabrication And Effect Of Milling Time On Spark Plasma Sintered Ti6Al4V/Gr Composite. Materials<br>Today: Proceedings, 2019, 18, 3693-3701.                                                                                                 | 0.9 | 0         |
| 31 | Densification, microstructure and mechanical properties of spark plasma sintered Ni-17%Cr binary alloys. International Journal of Advanced Manufacturing Technology, 2019, 101, 1573-1581.                                                  | 1.5 | 14        |
| 32 | Effect of Sintering Temperature and Yttrium Composition on the Densification, Microstructure and<br>Mechanical Properties of Spark Plasma Sintered Silicon Nitride Ceramics with Al2O3 and Y2O3<br>Additives. Silicon, 2019, 11, 2689-2699. | 1.8 | 16        |
| 33 | Microstructural evolution and mechanical properties of pure titanium powders processed by spark plasma sintering. Powder Technology, 2019, 345, 415-424.                                                                                    | 2.1 | 13        |
| 34 | Densification and structural transformation during spark plasma sintering of WC-Co-YSZ-cBN systems. International Journal of Refractory Metals and Hard Materials, 2018, 72, 341-348.                                                       | 1.7 | 18        |
| 35 | Sintering behavior and effect of ternary additions on the microstructure and mechanical properties of Ni–Fe-based alloy. Particulate Science and Technology, 2018, 36, 643-654.                                                             | 1.1 | 8         |
| 36 | Optimization of process parameters for spark plasma sintering of nano structured SAF 2205 composite. Journal of Materials Research and Technology, 2018, 7, 126-134.                                                                        | 2.6 | 37        |

MXOLISI SHONGWE

| #  | Article                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Effects of ternary metal additions on corrosion of spark plasma sintered Ni-Fe alloys in H2SO4 and<br>NaCl. Bulletin of the Chemical Society of Ethiopia, 2018, 32, 337.                                                            | 0.5 | 3         |
| 38 | Dependence of Fracture Patterns in Spark Plasma Sintered Irregular Shaped Ti6Al4V Powders on Densification. Procedia Manufacturing, 2017, 7, 567-572.                                                                               | 1.9 | 4         |
| 39 | Particle Variations and Effect on the Microstructure and Microhardness of Ti6al4V Hybrid Metal<br>Matrix System. Procedia Manufacturing, 2017, 7, 616-621.                                                                          | 1.9 | 2         |
| 40 | Influence of Temperature on Microstructure and Mechanical Properties of Ni-40Fe-10Co Alloy<br>Consolidated by Spark Plasma Sintering. Procedia Manufacturing, 2017, 7, 708-713.                                                     | 1.9 | 12        |
| 41 | Erosion–corrosion behaviour of spark plasma sintered WC - 12Co in aggressive media. International<br>Journal of Refractory Metals and Hard Materials, 2017, 66, 36-43.                                                              | 1.7 | 9         |
| 42 | Effect of scanning speed on laser deposited 17-4PH stainless steel. , 2017, , .                                                                                                                                                     |     | 7         |
| 43 | Effect of sintering parameters on densification, corrosion and wear behaviour of Ni-50Fe alloy prepared by spark plasma sintering. Journal of Alloys and Compounds, 2017, 699, 1166-1179.                                           | 2.8 | 38        |
| 44 | Interfacial Reaction During High Energy Ball Milling Dispersion of Carbon Nanotubes into Ti6Al4V.<br>Journal of Materials Engineering and Performance, 2017, 26, 6047-6056.                                                         | 1.2 | 11        |
| 45 | Densification and micro-structural characteristics of spark plasma sintered Ti-Zr-Ta powders. Powder<br>Technology, 2017, 321, 471-478.                                                                                             | 2.1 | 15        |
| 46 | Effect of starting powder particle size and heating rate on spark plasma sintering of Fe Ni alloys.<br>Journal of Alloys and Compounds, 2016, 678, 241-248.                                                                         | 2.8 | 59        |
| 47 | Anisotropic behavior studies of aluminum alloy 5083-H0 using a micro-tensile test stage in a FEG-SEM.<br>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and<br>Processing, 2016, 656, 266-274. | 2.6 | 5         |
| 48 | Tribocorrosion behaviours of AISI 310 and AISI 316 austenitic stainless steels in 3.5% NaCl solution.<br>Materials Chemistry and Physics, 2016, 171, 239-246.                                                                       | 2.0 | 28        |
| 49 | Effect of micron and nano-sized ZrB2 addition on the microstructure and properties of spark plasma<br>sintered graphite–aluminum hybrid composite. Journal of Materials Science: Materials in Electronics,<br>2016, 27, 4672-4688.  | 1.1 | 5         |
| 50 | A comparative study of spark plasma sintering and hybrid spark plasma sintering of 93W–4.9Ni–2.1Fe<br>heavy alloy. International Journal of Refractory Metals and Hard Materials, 2016, 55, 16-23.                                  | 1.7 | 31        |
| 51 | Spark plasma sintering of graphite–aluminum powder reinforced with SiC/Si particles. Powder<br>Technology, 2015, 284, 504-513.                                                                                                      | 2.1 | 31        |
| 52 | Effect of sintering temperature on the microstructure and mechanical properties of Fe–30%Ni alloys produced by spark plasma sintering. Journal of Alloys and Compounds, 2015, 649, 824-832.                                         | 2.8 | 81        |
| 53 | Evaluation of Wear and Corrosion Behaviour of Hybrid Sintered<br>Ti <sub>6</sub> Al <sub>4</sub> V Alloy. Key Engineering Materials, 0, 821, 321-326.                                                                               | 0.4 | 1         |
| 54 | Spark Plasma Synthesis and Tribological Behaviour of Ti-Ni-TiCN Nanocomposite. International Journal<br>of Engineering Research in Africa, 0, 55, 141-149.                                                                          | 0.7 | 0         |

| #  | Article                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Effect of Co and Fe contents on the microstructure and corrosion behaviour of heat-treated Ni-Fe-Co<br>superalloys in 3.5 wt% NaCl aqueous solution. International Journal of Advanced Manufacturing<br>Technology, 0, , 1. | 1.5 | 3         |
| 56 | Dry Sliding Wear and High-Velocity Impact Behaviour of Spark Plasma Sintered Ti-Ni Binary Alloys.<br>International Journal of Engineering Research in Africa, 0, 57, 1-18.                                                  | 0.7 | 0         |