Guohui Xiao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4844670/publications.pdf Version: 2024-02-01

Спонті Хіло

#	Article	IF	CITATIONS
1	Consistency assessment for open geodata integration: an ontology-based approach. GeoInformatica, 2021, 25, 733-758.	2.7	6
2	SUMA: A Partial Materialization-Based Scalable Query Answering in OWL 2 DL. Data Science and Engineering, 2021, 6, 229-245.	6.4	4
3	Ontology-Mediated SPARQL Query Answering over Knowledge Graphs. Big Data Research, 2021, 23, 100177.	4.2	7
4	Unsupervised person re-identification via K-reciprocal encoding and style transfer. International Journal of Machine Learning and Cybernetics, 2021, 12, 2899-2916.	3.6	6
5	Realizing Ontology-based Reusable Interfaces for Data Access via Virtual Knowledge Graphs. , 2021, , .		0
6	Accessing scientific data through knowledge graphs with Ontop. Patterns, 2021, 2, 100346.	5.9	7
7	Towards the next generation of the LinkedGeoData project using virtual knowledge graphs. Web Semantics, 2021, 71, 100662.	2.9	27
8	A Framework Uniting Ontology-Based Geodata Integration and Geovisual Analytics. ISPRS International Journal of Geo-Information, 2020, 9, 474.	2.9	8
9	A Partial Materialization-Based Approach to Scalable Query Answering in OWL 2 DL. Lecture Notes in Computer Science, 2020, , 171-187.	1.3	3
10	The Virtual Knowledge Graph System Ontop. Lecture Notes in Computer Science, 2020, , 259-277.	1.3	28
11	Semantic Integration of Bosch Manufacturing Data Using Virtual Knowledge Graphs. Lecture Notes in Computer Science, 2020, , 464-481.	1.3	29
12	Ontop-Spatial: Ontop of Geospatial Databases. SSRN Electronic Journal, 2019, , .	0.4	1
13	Ontop-spatial: Ontop of geospatial databases. Web Semantics, 2019, 58, 100514.	2.9	48
14	Ontology-based data access – Beyond relational sources. Intelligenza Artificiale, 2019, 13, 21-36.	1.6	6
15	Virtual Knowledge Graphs: An Overview of Systems and Use Cases. Data Intelligence, 2019, 1, 201-223.	1.5	80
16	Semantically-enhanced rule-based diagnostics for industrial Internet of Things: The SDRL language and case study for Siemens trains and turbines. Web Semantics, 2019, 56, 11-29.	2.9	23
17	VIG: Data scaling for OBDA benchmarks. Semantic Web, 2019, 10, 413-433.	1.9	11
18	Ontology–based access to temporal data with Ontop: A framework proposal. International Journal of Applied Mathematics and Computer Science, 2019, 29, 17-30.	1.5	7

Сиониі Хіао

#	Article	IF	CITATIONS
19	Finding Data Should be Easier than Finding Oil. , 2018, , .		5
20	Semantically-Enhanced Rule-Based Diagnostics for Industrial Internet of Things: The SDRL Language and Case Study for Siemens Trains and Turbines. SSRN Electronic Journal, 2018, , .	0.4	0
21	BigSR: real-time expressive RDF stream reasoning on modern Big Data platforms. , 2018, , .		4
22	Towards Simplification of Analytical Workflows With Semantics at Siemens (Extended Abstract). , 2018, , .		2
23	Diagnostics of Trains with Semantic Diagnostics Rules. Lecture Notes in Computer Science, 2018, , 54-71.	1.3	6
24	Ontop-temporal. , 2018, , .		3
25	Semantic Technologies for Data Access and Integration. , 2018, , .		1
26	PRSPR: An Adaptive Framework forÂMassive RDF Stream Reasoning. Lecture Notes in Computer Science, 2018, , 440-448.	1.3	0
27	Efficient Ontology-Based Data Integration with Canonical IRIs. Lecture Notes in Computer Science, 2018, , 697-713.	1.3	10
28	Efficient Handling of SPARQL OPTIONAL for OBDA. Lecture Notes in Computer Science, 2018, , 354-373.	1.3	18
29	Ontology-Based Data Access: A Survey. , 2018, , .		142
30	A Generalized Framework for Ontology-Based Data Access. Lecture Notes in Computer Science, 2018, , 166-180.	1.3	4
31	Ontology Based Data Access in Statoil. Web Semantics, 2017, 44, 3-36.	2.9	90
32	Semantic Rules for Machine Diagnostics. , 2017, , .		11
33	SemDia. , 2017, , .		10
34	Ontology Based Data Access in Statoil. SSRN Electronic Journal, 2017, , .	0.4	1
35	Cost-Driven Ontology-Based Data Access. Lecture Notes in Computer Science, 2017, , 452-470.	1.3	7
36	Ontop: Answering SPARQL queries over relational databases. Semantic Web, 2016, 8, 471-487.	1.9	294

Сиониі Хіао

#	Article	IF	CITATIONS
37	Ontology-Based Data Access for Maritime Security. Lecture Notes in Computer Science, 2016, , 741-757.	1.3	26
38	Towards Practical OBDA with Temporal Ontologies. Lecture Notes in Computer Science, 2016, , 18-24.	1.3	4
39	OBDA Constraints for Effective Query Answering. Lecture Notes in Computer Science, 2016, , 269-286.	1.3	4
40	Message from WEDA Organizing Committee. , 2015, , .		0
41	Inter-organizational success factors: a cause and effect model. Information Systems and E-Business Management, 2015, 13, 553-593.	3.7	23
42	Optique: Zooming in on Big Data. Computer, 2015, 48, 60-67.	1.1	79
43	A Rule-based Framework for Creating Instance Data from OpenStreetMap. Lecture Notes in Computer Science, 2015, , 93-104.	1.3	2
44	Ontology Based Access to Exploration Data at Statoil. Lecture Notes in Computer Science, 2015, , 93-112.	1.3	47
45	How to Stay Ontop of Your Data: Databases, Ontologies and More. Lecture Notes in Computer Science, 2015, , 20-25.	1.3	5
46	The Ontop Framework for Ontology Based Data Access. Communications in Computer and Information Science, 2014, , 67-77.	0.5	27
47	Inconsistency-tolerant reasoning with OWL DL. International Journal of Approximate Reasoning, 2014, 55, 557-584.	3.3	13
48	Rules and Ontology Based Data Access. Lecture Notes in Computer Science, 2014, , 157-172.	1.3	10
49	Answering SPARQL Queries over Databases under OWL 2 QL Entailment Regime. Lecture Notes in Computer Science, 2014, , 552-567.	1.3	56
50	VCWC: A Versioning Competition Workflow Compiler. Lecture Notes in Computer Science, 2013, , 233-238.	1.3	2
51	The Fourth Answer Set Programming Competition: Preliminary Report. Lecture Notes in Computer Science, 2013, , 42-53.	1.3	21
52	Uniform Evaluation of Nonmonotonic DL-Programs. Lecture Notes in Computer Science, 2012, , 1-22.	1.3	5
53	Inline Evaluation of Hybrid Knowledge Bases. Lecture Notes in Computer Science, 2011, , 300-305.	1.3	3
54	A Tableau Algorithm for Handling Inconsistency in OWL. Lecture Notes in Computer Science, 2009, , 399-413.	1.3	7

4

#	Article	IF	CITATIONS
55	An Anytime Algorithm for Computing Inconsistency Measurement. Lecture Notes in Computer Science, 2009, , 29-40.	1.3	8
56	Querying Log Data with Metric Temporal Logic. Journal of Artificial Intelligence Research, 0, 62, 829-877.	7.0	32