
Rangrong Yoksan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4844485/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	High Loading Degradation of Poly(lactide)/Thermoplastic Starch Blend Film Using Mixed-Enzymes Produced by Fed-Batch Culture of Laceyella sacchari LP175. Waste and Biomass Valorization, 2022, 13, 1981-1991.	1.8	1
2	Poly(lactic acid)/thermoplastic cassava starch blends filled with duckweed biomass. International Journal of Biological Macromolecules, 2022, 203, 369-378.	3.6	19
3	Bio-based thermoplastic natural rubber based on poly(lactic acid)/thermoplastic starch/calcium carbonate nanocomposites. International Journal of Biological Macromolecules, 2022, 208, 973-982.	3.6	5
4	Toughening polylactic acid by melt blending with polybutylene adipateâ€coâ€ŧerephthalate and natural rubber, and the performance of the resulting ternary blends. Journal of Applied Polymer Science, 2022, 139, .	1.3	2
5	Compatibility improvement of poly(lactic acid)/thermoplastic starch blown films using acetylated starch. Journal of Applied Polymer Science, 2021, 138, 49675.	1.3	25
6	Effect of jute fibers on morphological characteristics and properties of thermoplastic starch/biodegradable polyester blend. Cellulose, 2021, 28, 5513.	2.4	20
7	Water-soluble poly(ethylene glycol) methyl ether-grafted chitosan/alginate polyelectrolyte complex hydrogels. International Journal of Biological Macromolecules, 2021, 179, 353-365.	3.6	7
8	Structure and properties of in situ reactive blend of polylactide and thermoplastic starch. International Journal of Biological Macromolecules, 2021, 182, 1238-1247.	3.6	9
9	Thermoplastic starch blown films with improved mechanical and barrier properties. International Journal of Biological Macromolecules, 2021, 188, 290-299.	3.6	36
10	Relationship between microstructure and performances of simultaneous biaxially stretched films based on thermoplastic starch and biodegradable polyesters. International Journal of Biological Macromolecules, 2021, 190, 141-150.	3.6	21
11	Poly(l-lactide)-Degrading Enzyme Production by Laceyella sacchari LP175 Under Solid State Fermentation Using Low Cost Agricultural Crops and Its Hydrolysis of Poly(l-lactide) Film. Waste and Biomass Valorization, 2020, 11, 1961-1970.	1.8	9
12	Morphological characteristics and properties of TPS/PLA/cassava pulp biocomposites. Polymer Testing, 2020, 88, 106522.	2.3	33
13	Oligo(lactic acid)-grafted starch: A compatibilizer for poly(lactic acid)/thermoplastic starch blend. International Journal of Biological Macromolecules, 2020, 160, 506-517.	3.6	42
14	Morphology and properties of thermoplastic starch blended with biodegradable polyester and filled with halloysite nanoclay. Carbohydrate Polymers, 2020, 242, 116392.	5.1	41
15	Effects of pea protein on properties of cassava starch edible films produced by blown-film extrusion for oil packaging. Food Packaging and Shelf Life, 2020, 24, 100480.	3.3	85
16	Thermoplastic cassava starch/poly(lactic acid) blend reinforced with coir fibres. International Journal of Biological Macromolecules, 2020, 156, 960-968.	3.6	65
17	Characterization of amylose inclusion complexes using electron paramagnetic resonance spectroscopy. Food Hydrocolloids, 2018, 82, 82-88.	5.6	18
18	Morphological characteristics and barrier properties of thermoplastic starch/chitosan blown film. Carbohydrate Polymers, 2016, 150, 40-47.	5.1	88

RANGRONG YOKSAN

#	Article	IF	CITATIONS
19	Morphological characteristics of stearic acid-grafted starch-compatibilized linear low density polyethylene/thermoplastic starch blown film. European Polymer Journal, 2016, 76, 266-277.	2.6	41
20	Effect of stearic acid-grafted starch compatibilizer on properties of linear low density polyethylene/thermoplastic starch blown film. Carbohydrate Polymers, 2016, 137, 165-173.	5.1	35
21	Co-production of poly(l-lactide)-degrading enzyme and raw starch-degrading enzyme by Laceyella sacchari LP175 using agricultural products as substrate, and their efficiency on biodegradation of poly(l-lactide)/thermoplastic starch blend film. International Biodeterioration and Biodegradation, 2015. 104. 401-410.	1.9	21
22	Ferulic acid-coupled chitosan: Thermal stability and utilization as an antioxidant for biodegradable active packaging film. Carbohydrate Polymers, 2015, 115, 744-751.	5.1	66
23	Development of thermoplastic starch blown film by incorporating plasticized chitosan. Carbohydrate Polymers, 2015, 115, 575-581.	5.1	162
24	Water-based oligochitosan and nanowhisker chitosan as potential food preservatives for shelf-life extension of minced pork. Food Chemistry, 2014, 159, 463-470.	4.2	54
25	Hydrophobically modified chitosan: A bio-based material for antimicrobial active film. Materials Science and Engineering C, 2014, 42, 569-577.	3.8	46
26	Eugenol-loaded chitosan nanoparticles: I. Thermal stability improvement of eugenol through encapsulation. Carbohydrate Polymers, 2013, 96, 578-585.	5.1	286
27	Eugenol-loaded chitosan nanoparticles: II. Application in bio-based plastics for active packaging. Carbohydrate Polymers, 2013, 96, 586-592.	5.1	89
28	Water-based nano-sized chitin and chitosan as seafood additive through a case study of Pacific white shrimp (Litopenaeus vannamei). Food Hydrocolloids, 2013, 32, 341-348.	5.6	50
29	Preparation, characterization and antioxidant property of water-soluble ferulic acid grafted chitosan. Carbohydrate Polymers, 2013, 96, 495-502.	5.1	201
30	Antioxidant Properties of Selected Plant Extracts and Application in Packaging as Antioxidant Celluloseâ€Based Films for Vegetable Oil. Packaging Technology and Science, 2012, 25, 125-136.	1.3	18
31	Effect of amphiphilic molecules on characteristics and tensile properties of thermoplastic starch and its blends with poly(lactic acid). Carbohydrate Polymers, 2011, 83, 22-31.	5.1	92
32	Preparation, characterization and in vitro release study of carvacrol-loaded chitosan nanoparticles. Colloids and Surfaces B: Biointerfaces, 2011, 84, 163-171.	2.5	468
33	Encapsulation of ascorbyl palmitate in chitosan nanoparticles by oil-in-water emulsion and ionic gelation processes. Colloids and Surfaces B: Biointerfaces, 2010, 76, 292-297.	2.5	228
34	Silver nanoparticle-loaded chitosan–starch based films: Fabrication and evaluation of tensile, barrier and antimicrobial properties. Materials Science and Engineering C, 2010, 30, 891-897.	3.8	228
35	Silver nanoparticles dispersing in chitosan solution: Preparation by Î ³ -ray irradiation and their antimicrobial activities. Materials Chemistry and Physics, 2009, 115, 296-302.	2.0	129
36	Amphiphilic chitosan nanospheres: Factors to control nanosphere formation and its consequent pH responsive performance. Polymer, 2009, 50, 1877-1886.	1.8	31

RANGRONG YOKSAN

#	Article	IF	CITATIONS
37	Incorporation methods for cholic acid chitosan-g-mPEG self-assembly micellar system containing camptothecin. Colloids and Surfaces B: Biointerfaces, 2009, 74, 253-259.	2.5	43
38	Low molecular weight chitosan-g-l-phenylalanine: Preparation, characterization, and complex formation with DNA. Carbohydrate Polymers, 2009, 75, 95-103.	5.1	32
39	Amphiphilic chitosan nanosphere: Studies on formation, toxicity, and guest molecule incorporation. Bioorganic and Medicinal Chemistry, 2008, 16, 2687-2696.	1.4	44
40	Chitosan gel formation via the chitosan–epichlorohydrin adduct and its subsequent mineralization with hydroxyapatite. Polymer, 2006, 47, 6438-6445.	1.8	21
41	Controlled hydrophobic/hydrophilic chitosan: colloidal phenomena and nanosphere formation. Colloid and Polymer Science, 2004, 282, 337-342.	1.0	50
42	Optimal Î ³ -Ray Dose and Irradiation Conditions for Producing Low-Molecular-Weight Chitosan that Retains its Chemical Structure. Radiation Research, 2004, 161, 471-480.	0.7	56
43	Controlled hydrophobic/hydrophilicity of chitosan for spheres without specific processing technique. Biopolymers, 2003, 69, 386-390.	1.2	31
44	Î ³ -Ray Irradiation Practical Conditions for Low Molecular Weight Chitosan Material Production. Materials Research Society Symposia Proceedings, 2003, 792, 389.	0.1	0
45	Hydrophobic Chain Conjugation at Hydroxyl Group onto Î ³ -Ray Irradiated Chitosan. Biomacromolecules, 2001, 2, 1038-1044.	2.6	45