
## Hua Jin

## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4844279/publications.pdf Version: 2024-02-01



Нил Ім

| #  | Article                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Investigation of the parameters of carbon nanotube growth on zirconium diboride supported Ni<br>catalyst via CVD. Diamond and Related Materials, 2021, 115, 108347.                                                        | 3.9 | 15        |
| 2  | Comparison of carbon nanotube deposition on HfB2, ZrB2, and TiB2 by chemical vapor decomposition.<br>Materials Today Communications, 2021, 28, 102540.                                                                     | 1.9 | 0         |
| 3  | Growth of multi-morphology amorphous silicon oxycarbide nanowires during the laser ablation of polymer-derived silicon carbonitride. Ceramics International, 2020, 46, 2086-2092.                                          | 4.8 | 3         |
| 4  | An experimental study of ultra-high temperature ceramics under tension subject to an environment<br>with elevated temperature, mechanical stress and oxygen. Science China Technological Sciences, 2019,<br>62, 1349-1356. | 4.0 | 8         |
| 5  | Thermal stability and nanostructure evolution of amorphous SiCN ceramics during laser ablation in an argon atmosphere. Journal of the European Ceramic Society, 2019, 39, 4535-4544.                                       | 5.7 | 13        |
| 6  | Modified double-notched specimen for ultra-high temperatures shear-strength testing of carbon/carbon composites. Journal of the European Ceramic Society, 2019, 39, 4654-4663.                                             | 5.7 | 11        |
| 7  | Spatially resolved ground state atomic oxygen density during the mode transition of inductively coupled oxygen plasmas. Vacuum, 2019, 164, 98-104.                                                                         | 3.5 | 4         |
| 8  | Electrical conductivity change induced by porosity within polymer-derived SiCN ceramics. Journal of<br>Alloys and Compounds, 2019, 777, 1010-1016.                                                                         | 5.5 | 20        |
| 9  | In situ synthesis of CNTs in HfB2 powders by chemical vapor deposition of methane to fabricate reinforced HfB2 composites. Journal of Alloys and Compounds, 2018, 745, 1-7.                                                | 5.5 | 5         |
| 10 | Fabrication and Thermal Structural Characteristics of Ultra-high Temperature Ceramic Struts in<br>Scramjets. Journal Wuhan University of Technology, Materials Science Edition, 2018, 33, 375-380.                         | 1.0 | 4         |
| 11 | Evaluation of atomic oxygen catalytic coefficient of ZrB <sub>2</sub> –SiC by laser-induced fluorescence up to 1473 K. Measurement Science and Technology, 2018, 29, 075207.                                               | 2.6 | 2         |
| 12 | Fabrication and properties of <scp>CNT</scp> /Ni/Y/ZrB <sub>2</sub> nanocomposites reinforced in situ. Journal of the American Ceramic Society, 2018, 101, 1747-1753.                                                      | 3.8 | 3         |
| 13 | Continuous regulation from fully dense to high porosity within polymer-derived SiCN ceramics.<br>Ceramics International, 2018, 44, 40-45.                                                                                  | 4.8 | 6         |
| 14 | improved laser ablation resistance of Si-C-N precursor derived ceramics in air. Ceramics International, 2018, 44, 23267-23272.                                                                                             | 4.8 | 5         |
| 15 | Predicting the effective properties of 3D needled carbon/carbon composites by a hierarchical scheme with a fiber-based representative unit cell. Composite Structures, 2017, 172, 198-209.                                 | 5.8 | 28        |
| 16 | Measurement of highâ€ŧemperature strains in superalloy and carbon/carbon composites using chemical composition gratings. Strain, 2017, 53, e12218.                                                                         | 2.4 | 1         |
| 17 | HfB2-CNTs composites with enhanced mechanical properties prepared by spark plasma sintering.<br>Ceramics International, 2017, 43, 2170-2173.                                                                               | 4.8 | 16        |
| 18 | ZrB2-CNTs Nanocomposites Fabricated by Spark Plasma Sintering. Materials, 2016, 9, 967.                                                                                                                                    | 2.9 | 13        |

Hua Jin

| #  | Article                                                                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Application of CCG Sensors to a High-Temperature Structure Subjected to Thermo-Mechanical Load.<br>Sensors, 2016, 16, 1686.                                                                       | 3.8 | 1         |
| 20 | Oxidation of ZrB <sub>2</sub> –SiCâ€Graphite Composites Under Low Oxygen Partial Pressures of 500<br>and 1500 Pa at 1800°C. Journal of the American Ceramic Society, 2016, 99, 2474-2480.         | 3.8 | 16        |
| 21 | Measurement of the high-temperature strain of UHTC materials using chemical composition gratings.<br>Measurement Science and Technology, 2016, 27, 055101.                                        | 2.6 | 3         |
| 22 | A novel method to evaluate the thermal shock behavior of ZrB2-SiC-graphite composites under alternating complex thermal stress environments. Ceramics International, 2016, 42, 16354-16358.       | 4.8 | 10        |
| 23 | ZrO2-induced crack-healing mechanism of ZrB2–SiC–Graphite composite in high temperature atomic oxygen environment. Ceramics International, 2016, 42, 5562-5568.                                   | 4.8 | 11        |
| 24 | Effects of oxidation temperature, time, and ambient pressure on the oxidation of ZrB 2 –SiC–graphite composites in atomic oxygen. Journal of the European Ceramic Society, 2016, 36, 1855-1861.   | 5.7 | 31        |
| 25 | Effects of oxygen partial pressure on the oxidation of ZrB2–SiC–graphite composites at 1800 °C.<br>Ceramics International, 2016, 42, 6480-6486.                                                   | 4.8 | 18        |
| 26 | Thermal shock resistance of a ZrB2–SiC–graphite composite in low oxygen partial pressure environment. Ceramics International, 2013, 39, 5591-5596.                                                | 4.8 | 16        |
| 27 | Effect of environment atmosphere on thermal shock resistance of the ZrB2–SiC–graphite composite.<br>Materials & Design, 2013, 50, 509-514.                                                        | 5.1 | 26        |
| 28 | R-curve behavior, mechanical properties and microstructure of sintered ZrB2–SiCp–ZrO2f ceramics.<br>Journal of the European Ceramic Society, 2012, 32, 1743-1749.                                 | 5.7 | 8         |
| 29 | Mechanism analysis of thermal shock properties for ZrB2-20%SiCp-10%AlN ultra-high temperature ceramic with the surface defects. Solid State Sciences, 2010, 12, 1667-1671.                        | 3.2 | 8         |
| 30 | The Influential Factors Analysis of Surface Crack Propagation Behavior of<br>ZrB <sub>2</sub> -20%SiC-10%AlN Ceramic Subjected to Thermal Shock. Advanced Materials<br>Research, 0, 486, 166-173. | 0.3 | 0         |