
Zhen-Yu Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4844142/publications.pdf Version: 2024-02-01

Ζηένι-Υπ Μάνις

#	Article	IF	CITATIONS
1	Xylem- and Phloem-Based Transport of CuO Nanoparticles in Maize (<i>Zea mays</i> L.). Environmental Science & Technology, 2012, 46, 4434-4441.	10.0	601
2	Graphene in the Aquatic Environment: Adsorption, Dispersion, Toxicity and Transformation. Environmental Science & Technology, 2014, 48, 9995-10009.	10.0	573
3	Impacts of adding biochar on nitrogen retention and bioavailability in agricultural soil. Geoderma, 2013, 206, 32-39.	5.1	365
4	Nano-Biotechnology in Agriculture: Use of Nanomaterials to Promote Plant Growth and Stress Tolerance. Journal of Agricultural and Food Chemistry, 2020, 68, 1935-1947.	5.2	363
5	Investigating the mechanisms of biochar's removal of lead from solution. Bioresource Technology, 2015, 177, 308-317.	9.6	337
6	Sorption of antibiotic sulfamethoxazole varies with biochars produced at different temperatures. Environmental Pollution, 2013, 181, 60-67.	7.5	334
7	Toxicity and Internalization of CuO Nanoparticles to Prokaryotic Alga <i>Microcystis aeruginosa</i> as Affected by Dissolved Organic Matter. Environmental Science & Technology, 2011, 45, 6032-6040.	10.0	323
8	Characteristics and nutrient values of biochars produced from giant reed at different temperatures. Bioresource Technology, 2013, 130, 463-471.	9.6	301
9	CuO Nanoparticle Interaction with Human Epithelial Cells: Cellular Uptake, Location, Export, and Genotoxicity. Chemical Research in Toxicology, 2012, 25, 1512-1521.	3.3	269
10	Toxicity of nano-TiO2 on algae and the site of reactive oxygen species production. Aquatic Toxicology, 2015, 158, 1-13.	4.0	256
11	Effect of sub-acute exposure to TiO2 nanoparticles on oxidative stress and histopathological changes in Juvenile Carp (Cyprinus carpio). Journal of Environmental Sciences, 2009, 21, 1459-1466.	6.1	229
12	Norfloxacin Sorption and Its Thermodynamics on Surface-Modified Carbon Nanotubes. Environmental Science & Technology, 2010, 44, 978-984.	10.0	208
13	Environmental processes and toxicity of metallic nanoparticles in aquatic systems as affected by natural organic matter. Environmental Science: Nano, 2016, 3, 240-255.	4.3	208
14	Use of biochar-compost to improve properties and productivity of the degraded coastal soil in the Yellow River Delta, China. Journal of Soils and Sediments, 2017, 17, 780-789.	3.0	208
15	Mechanistic understanding toward the toxicity of graphene-family materials to freshwater algae. Water Research, 2017, 111, 18-27.	11.3	203
16	Enhanced growth of halophyte plants in biocharâ€amended coastal soil: roles of nutrient availability and rhizosphere microbial modulation. Plant, Cell and Environment, 2018, 41, 517-532.	5.7	194
17	Photodegradation Elevated the Toxicity of Polystyrene Microplastics to Grouper (<i>Epinephelus) Tj ETQq1 1 0.7 2020, 54, 6202-6212.</i>	'84314 rgE 10.0	3T /Overlock 187
18	Heteroaggregation of Graphene Oxide with Minerals in Aqueous Phase. Environmental Science & Technology, 2015, 49, 2849-2857.	10.0	182

#	Article	IF	CITATIONS
19	Formation and Physicochemical Characteristics of Nano Biochar: Insight into Chemical and Colloidal Stability. Environmental Science & Technology, 2018, 52, 10369-10379.	10.0	178
20	Nano-enabled fertilizers to control the release and use efficiency of nutrients. Current Opinion in Environmental Science and Health, 2018, 6, 77-83.	4.1	174
21	Biochar-induced negative carbon mineralization priming effects in a coastal wetland soil: Roles of soil aggregation and microbial modulation. Science of the Total Environment, 2018, 610-611, 951-960.	8.0	170
22	CuO Nanoparticle Interaction with <i>Arabidopsis thaliana</i> : Toxicity, Parent-Progeny Transfer, and Gene Expression. Environmental Science & Technology, 2016, 50, 6008-6016.	10.0	160
23	Characterization and influence of biochars on nitrous oxide emission from agricultural soil. Environmental Pollution, 2013, 174, 289-296.	7.5	156
24	Mitigation of CuO nanoparticle-induced bacterial membrane damage by dissolved organic matter. Water Research, 2013, 47, 4169-4178.	11.3	152
25	Distribution of CuO nanoparticles in juvenile carp (Cyprinus carpio) and their potential toxicity. Journal of Hazardous Materials, 2011, 197, 304-310.	12.4	151
26	Toxicological effects of nano- and micro-polystyrene plastics on red tilapia: Are larger plastic particles more harmless?. Journal of Hazardous Materials, 2020, 396, 122693.	12.4	137
27	Adsorption and inhibition of acetylcholinesterase by different nanoparticles. Chemosphere, 2009, 77, 67-73.	8.2	132
28	Adsorption and Desorption of Phenanthrene on Carbon Nanotubes in Simulated Gastrointestinal Fluids. Environmental Science & Technology, 2011, 45, 6018-6024.	10.0	125
29	Interactions of CuO nanoparticles with the algae <i>Chlorella pyrenoidosa</i> : adhesion, uptake, and toxicity. Nanotoxicology, 2016, 10, 1297-1305.	3.0	120
30	Size Matters: Nano-Biochar Triggers Decomposition and Transformation Inhibition of Antibiotic Resistance Genes in Aqueous Environments. Environmental Science & Technology, 2020, 54, 8821-8829.	10.0	111
31	Reduced nitrification and abundance of ammonia-oxidizing bacteria in acidic soil amended with biochar. Chemosphere, 2015, 138, 576-583.	8.2	107
32	Nano-enabled improvements of growth and nutritional quality in food plants driven by rhizosphere processes. Environment International, 2020, 142, 105831.	10.0	106
33	Remediation of petroleum contaminated soils through composting and rhizosphere degradation. Journal of Hazardous Materials, 2011, 190, 677-685.	12.4	105
34	Adsorption of Phenanthrene on Multilayer Graphene as Affected by Surfactant and Exfoliation. Environmental Science & Technology, 2014, 48, 331-339.	10.0	101
35	Algae response to engineered nanoparticles: current understanding, mechanisms and implications. Environmental Science: Nano, 2019, 6, 1026-1042.	4.3	96
36	Engineered nanomaterials in the environment: Are they safe?. Critical Reviews in Environmental Science and Technology, 2021, 51, 1443-1478.	12.8	88

#	Article	IF	CITATIONS
37	Comparative toxicity of the plasticizer dibutyl phthalate to two freshwater algae. Aquatic Toxicology, 2017, 191, 122-130.	4.0	87
38	The effect of biochar amendment on N-cycling genes in soils: A meta-analysis. Science of the Total Environment, 2019, 696, 133984.	8.0	85
39	Uptake, Distribution, and Transformation of CuO NPs in a Floating Plant <i>Eichhornia crassipes</i> and Related Stomatal Responses. Environmental Science & Technology, 2017, 51, 7686-7695.	10.0	82
40	Nanotechnology as a new sustainable approach for controlling crop diseases and increasing agricultural production. Journal of Experimental Botany, 2020, 71, 507-519.	4.8	81
41	Interactive effects of microplastics and selected pharmaceuticals on red tilapia: Role of microplastic aging. Science of the Total Environment, 2021, 752, 142256.	8.0	77
42	Effects of Carbon Quantum Dots on Aquatic Environments: Comparison of Toxicity to Organisms at Different Trophic Levels. Environmental Science & Technology, 2018, 52, 14445-14451.	10.0	76
43	CeO ₂ Nanoparticles Regulate the Propagation of Antibiotic Resistance Genes by Altering Cellular Contact and Plasmid Transfer. Environmental Science & Technology, 2020, 54, 10012-10021.	10.0	73
44	New Insights into Black Carbon Nanoparticle-Induced Dispersibility of Goethite Colloids and Configuration-Dependent Sorption for Phenanthrene. Environmental Science & Technology, 2019, 53, 661-670.	10.0	71
45	Biodegradation of Crude Oil in Contaminated Soils by Free and Immobilized Microorganisms. Pedosphere, 2012, 22, 717-725.	4.0	70
46	Nitrogen-Doped Carbon Dots Increased Light Conversion and Electron Supply to Improve the Corn Photosystem and Yield. Environmental Science & Technology, 2021, 55, 12317-12325.	10.0	67
47	Biochar addition reduced net N mineralization of a coastal wetland soil in the Yellow River Delta, China. Geoderma, 2016, 282, 120-128.	5.1	65
48	Graphene quantum dots in alveolar macrophage: uptake-exocytosis, accumulation in nuclei, nuclear responses and DNA cleavage. Particle and Fibre Toxicology, 2018, 15, 45.	6.2	65
49	Coadsorption, desorption hysteresis and sorption thermodynamics of sulfamethoxazole and carbamazepine on graphene oxide and graphite. Carbon, 2013, 65, 243-251.	10.3	64
50	Aging impacts of low molecular weight organic acids (LMWOAs) on furfural production residue-derived biochars: Porosity, functional properties, and inorganic minerals. Science of the Total Environment, 2017, 607-608, 1428-1436.	8.0	64
51	Characteristics and mechanisms of chlorpyrifos and chlorpyrifos-methyl adsorption onto biochars: Influence of deashing and low molecular weight organic acid (LMWOA) aging and co-existence. Science of the Total Environment, 2019, 657, 953-962.	8.0	62
52	Elemental Sulfur Nanoparticles Enhance Disease Resistance in Tomatoes. ACS Nano, 2021, 15, 11817-11827.	14.6	60
53	Trophic transfer and accumulation of TiO2 nanoparticles from clamworm (Perinereis aibuhitensis) to juvenile turbot (Scophthalmus maximus) along a marine benthic food chain. Water Research, 2016, 95, 250-259.	11.3	59
54	Pulmonary Surfactant Suppressed Phenanthrene Adsorption on Carbon Nanotubes through Solubilization and Competition As Examined by Passive Dosing Technique. Environmental Science & Technology, 2012, 46, 5369-5377.	10.0	56

#	Article	IF	CITATIONS
55	Characteristics and mechanisms of microcystin-LR adsorption by giant reed-derived biochars: Role of minerals, pores, and functional groups. Journal of Cleaner Production, 2018, 176, 463-473.	9.3	56
56	Foliar Application with Iron Oxide Nanomaterials Stimulate Nitrogen Fixation, Yield, and Nutritional Quality of Soybean. ACS Nano, 2022, 16, 1170-1181.	14.6	56
57	Microbial Community Characteristics in a Degraded Wetland of the Yellow River Delta. Pedosphere, 2010, 20, 466-478.	4.0	55
58	Effects of biochar on carbon mineralization of coastal wetland soils in the Yellow River Delta, China. Ecological Engineering, 2016, 94, 329-336.	3.6	53
59	The role of biochars in sustainable crop production and soil resiliency. Journal of Experimental Botany, 2020, 71, 520-542.	4.8	53
60	Polystyrene microplastics impaired the feeding and swimming behavior of mysid shrimp Neomysis japonica. Marine Pollution Bulletin, 2020, 150, 110660.	5.0	49
61	Toxicity of GO to Freshwater Algae in the Presence of Al ₂ O ₃ Particles with Different Morphologies: Importance of Heteroaggregation. Environmental Science & Technology, 2018, 52, 13448-13456.	10.0	47
62	Phenanthrene binding by humic acid–protein complexes as studied by passive dosing technique. Environmental Pollution, 2014, 184, 145-153.	7.5	45
63	Physicochemical and sorption properties of thermally-treated sediments with high organic matter content. Bioresource Technology, 2012, 103, 367-373.	9.6	44
64	Efficacies of biochar and biochar-based amendment on vegetable yield and nitrogen utilization in four consecutive planting seasons. Science of the Total Environment, 2017, 593-594, 124-133.	8.0	43
65	Uptake, Transport, and Transformation of CeO ₂ Nanoparticles by Strawberry and Their Impact on the Rhizosphere Bacterial Community. ACS Sustainable Chemistry and Engineering, 2020, 8, 4792-4800.	6.7	42
66	Interaction of CuO nanoparticles with duckweed (Lemna minor. L): Uptake, distribution and ROS production sites. Environmental Pollution, 2018, 243, 543-552.	7.5	41
67	Soil-Water Threshold Range of Chemical Signals and Drought Tolerance Was Mediated by ROS Homeostasis in Winter Wheat During Progressive Soil Drying. Journal of Plant Growth Regulation, 2008, 27, 309-319.	5.1	40
68	Accumulation of metal-based nanoparticles in marine bivalve mollusks from offshore aquaculture as detected by single particle ICP-MS. Environmental Pollution, 2020, 260, 114043.	7.5	40
69	Interaction of CuO nanoparticles with plant cells: internalization, oxidative stress, electron transport chain disruption, and toxicogenomic responses. Environmental Science: Nano, 2018, 5, 2269-2281.	4.3	39
70	Photosynthetic response mechanisms in typical C3 and C4 plants upon La ₂ O ₃ nanoparticle exposure. Environmental Science: Nano, 2020, 7, 81-92.	4.3	39
71	Interaction of graphene oxide with co-existing arsenite and arsenate: Adsorption, transformation and combined toxicity. Environment International, 2019, 131, 104992.	10.0	38
72	A flexible and salt-rejecting electrospun film-based solar evaporator for economic, stable and efficient solar desalination and wastewater treatment. Chemosphere, 2021, 267, 128916.	8.2	38

#	Article	IF	CITATIONS
73	Metallic oxide nanomaterials act as antioxidant nanozymes in higher plants: Trends, meta-analysis, and prospect. Science of the Total Environment, 2021, 780, 146578.	8.0	38
74	Foliar carbon dot amendment modulates carbohydrate metabolism, rhizospheric properties and drought tolerance in maize seedling. Science of the Total Environment, 2022, 809, 151105.	8.0	38
75	Nanobiochar-rhizosphere interactions: Implications for the remediation of heavy-metal contaminated soils. Environmental Pollution, 2022, 299, 118810.	7.5	38
76	Photo-transformation of graphene oxide in the presence of co-existing metal ions regulated its toxicity to freshwater algae. Water Research, 2020, 176, 115735.	11.3	37
77	Early development of apoplastic barriers and molecular mechanisms in juvenile maize roots in response to La2O3 nanoparticles. Science of the Total Environment, 2019, 653, 675-683.	8.0	36
78	CuO nanoparticles doping recovered the photocatalytic antialgal activity of graphitic carbon nitride. Journal of Hazardous Materials, 2021, 403, 123621.	12.4	35
79	Foliar-applied cerium oxide nanomaterials improve maize yield under salinity stress: Reactive oxygen species homeostasis and rhizobacteria regulation. Environmental Pollution, 2022, 299, 118900.	7.5	35
80	Detection of phthalate esters in seawater by stir bar sorptive extraction and gas chromatography–mass spectrometry. Marine Pollution Bulletin, 2016, 108, 163-170.	5.0	33
81	Adsorption and inhibition of butyrylcholinesterase by different engineered nanoparticles. Chemosphere, 2010, 79, 86-92.	8.2	32
82	Inhibitory effects and oxidative target site of dibutyl phthalate on Karenia brevis. Chemosphere, 2015, 132, 32-39.	8.2	30
83	Genotoxic response and damage recovery of macrophages to graphene quantum dots. Science of the Total Environment, 2019, 664, 536-545.	8.0	30
84	Effects of biochar input on the properties of soil nanoparticles and dispersion/sedimentation of natural mineral nanoparticles in aqueous phase. Science of the Total Environment, 2018, 634, 595-605.	8.0	28
85	Humic acid mitigated toxicity of graphene-family materials to algae through reducing oxidative stress and heteroaggregation. Environmental Science: Nano, 2019, 6, 1909-1920.	4.3	28
86	Improved anaerobic digestion efficiency of high-solid sewage sludge by enhanced direct interspecies electron transfer with activated carbon mediator. Bioresource Technology, 2020, 313, 123648.	9.6	28
87	Nanosilicon enhances maize resistance against oriental armyworm (Mythimna separata) by activating the biosynthesis of chemical defenses. Science of the Total Environment, 2021, 778, 146378.	8.0	28
88	Potential toxicity of nanoplastics to fish and aquatic invertebrates: Current understanding, mechanistic interpretation, and meta-analysis. Journal of Hazardous Materials, 2022, 427, 127870.	12.4	28
89	Therapeutic Delivery of Nanoscale Sulfur to Suppress Disease in Tomatoes: In Vitro Imaging and Orthogonal Mechanistic Investigation. ACS Nano, 2022, 16, 11204-11217.	14.6	28
90	Graphene oxide mediated reduction of silver ions to silver nanoparticles under environmentally relevant conditions: Kinetics and mechanisms. Science of the Total Environment, 2019, 679, 270-278.	8.0	27

#	Article	IF	CITATIONS
91	A key moment for TiO2: Prenatal exposure to TiO2 nanoparticles may inhibit the development of offspring. Ecotoxicology and Environmental Safety, 2020, 202, 110911.	6.0	27
92	New insight into the photo-transformation mechanisms of graphene oxide under UV-A, UV-B and UV-C lights. Journal of Hazardous Materials, 2021, 403, 123683.	12.4	27
93	Multiomics understanding of improved quality in cherry radish (Raphanus sativus L. var. radculus) Tj ETQq1 1 0.78 153712.	84314 rgB ⁻ 8.0	T /Overlock 27
94	Processes and mechanisms of photosynthesis augmented by engineered nanomaterials. Environmental Chemistry, 2019, 16, 430.	1.5	26
95	Molecular Mechanisms of Early Flowering in Tomatoes Induced by Manganese Ferrite (MnFe ₂ O ₄) Nanomaterials. ACS Nano, 2022, 16, 5636-5646.	14.6	26
96	Combined toxicity of nano-TiO2 and Cd2+ to Scenedesmus obliquus: Effects at different concentration ratios. Journal of Hazardous Materials, 2021, 418, 126354.	12.4	25
97	Trophic transfer of TiO ₂ nanoparticles from marine microalga (Nitzschia closterium) to scallop (Chlamys farreri) and related toxicity. Environmental Science: Nano, 2017, 4, 415-424.	4.3	24
98	Cleavage and transformation inhibition of extracellular antibiotic resistance genes by graphene oxides with different lateral sizes. Science of the Total Environment, 2019, 695, 133932.	8.0	24
99	Environmental risks of disposable face masks during the pandemic of COVID-19: Challenges and management. Science of the Total Environment, 2022, 825, 153880.	8.0	24
100	Photochemical Transformation and Catalytic Activity of Dissolved Black Nitrogen Released from Environmental Black Carbon. Environmental Science & amp; Technology, 2021, 55, 6476-6484.	10.0	23
101	The molecular mechanisms of silica nanomaterials enhancing the rice (Oryza sativa L.) resistance to planthoppers (Nilaparvata lugens Stal). Science of the Total Environment, 2021, 767, 144967.	8.0	23
102	Downregulation of the photosynthetic machinery and carbon storage signaling pathways mediate La2O3 nanoparticle toxicity on radish taproot formation. Journal of Hazardous Materials, 2021, 411, 124971.	12.4	23
103	Interaction and combined toxicity of microplastics and per- and polyfluoroalkyl substances in aquatic environment. Frontiers of Environmental Science and Engineering, 2022, 16, .	6.0	23
104	TiO2 hollow heterophase junction with enhanced pollutant adsorption, light harvesting, and charge separation for photocatalytic degradation of volatile organic compounds. Chemical Engineering Journal, 2020, 391, 123602.	12.7	20
105	TiO ₂ Nanoparticles in the Marine Environment: Enhancing Bioconcentration, While Limiting Biotransformation of Arsenic in the Mussel <i>Perna viridis</i> . Environmental Science & Technology, 2020, 54, 12254-12261.	10.0	20
106	Electroformation and electrofusion of giant vesicles in a microfluidic device. Colloids and Surfaces B: Biointerfaces, 2013, 110, 81-87.	5.0	19
107	Copper nanoclusters promote tomato (Solanum lycopersicum L.) yield and quality through improving photosynthesis and roots growth. Environmental Pollution, 2021, 289, 117912.	7.5	19
108	Allelopathic inhibition on red tide microalgae Skeletonema costatum by five macroalgal extracts. Frontiers of Environmental Science and Engineering in China, 2008, 2, 297-305.	0.8	18

#	Article	IF	CITATIONS
109	Transformation and species identification of CuO nanoparticles in plant cells (<i>Nicotiana) Tj ETQq1 1 0.784314</i>	rgBT /Ov	erlock 10 Tf
110	New insight into the mechanism of graphene oxide-enhanced phytotoxicity of arsenic species. Journal of Hazardous Materials, 2021, 410, 124959.	12.4	18
111	Mechanisms of growth-promotion and Se-enrichment in <i>Brassica chinensis</i> L. by selenium nanomaterials: beneficial rhizosphere microorganisms, nutrient availability, and photosynthesis. Environmental Science: Nano, 2022, 9, 302-312.	4.3	18
112	Ball-milled biochar for efficient neutral electrosynthesis of hydrogen peroxide. Chemical Engineering Journal, 2022, 434, 134788.	12.7	17
113	Behavioural and chronic toxicity of fullerene to Daphnia magna: Mechanisms revealed by transcriptomic analysis. Environmental Pollution, 2019, 255, 113181.	7.5	16
114	Mitigation effects of CO2-driven ocean acidification on Cd toxicity to the marine diatom Skeletonema costatum. Environmental Pollution, 2020, 259, 113850.	7.5	16
115	Effects of Low-Molecular-Weight Organic Acids on Soil Micropores and Implication for Organic Contaminant Availability. Communications in Soil Science and Plant Analysis, 2014, 45, 1120-1132.	1.4	14
116	Construction of quantum-scale catalytic regions on anatase TiO2 nanoparticles by loading TiO2 quantum dots for the photocatalytic degradation of VOCs. Ceramics International, 2021, 47, 21090-21098.	4.8	14
117	Physiological and proteomic analyses reveal the effect of CeO2 nanoparticles on strawberry reproductive system and fruit quality. Science of the Total Environment, 2022, 814, 152494.	8.0	14
118	Cell Walls Are Remodeled to Alleviate nY ₂ O ₃ Cytotoxicity by Elaborate Regulation of <i>de Novo</i> Synthesis and Vesicular Transport. ACS Nano, 2021, 15, 13166-13177.	14.6	13
119	Novel Insights into the Impact of Nano-Biochar on Composition and Structural Transformation of Mineral/Nano-Biochar Heteroaggregates in the Presence of Root Exudates. Environmental Science & Technology, 2022, 56, 9816-9825.	10.0	13
120	Comparison of the ecotoxicological effects of biochar and activated carbon on a marine clam (Meretrix meretrix). Journal of Cleaner Production, 2018, 180, 252-262.	9.3	12
121	Testing Mechanical Properties of Rock Bolt under Different Supports Using Fiber Bragg Grating Technology. Sensors, 2019, 19, 4098.	3.8	12
122	Alleviative Effects of C ₆₀ on the Trophic Transfer of Cadmium along the Food Chain in Aquatic Environment. Environmental Science & Technology, 2019, 53, 8381-8388.	10.0	12
123	Nano-black carbon (biochar) released from pyrogenic carbonaceous matter as a super suspending agent in water/soil environments. Biochar, 2021, 3, 1-3.	12.6	12
124	TiO2 nanoparticles enhanced bioaccumulation and toxic performance of PAHs via trophic transfer. Journal of Hazardous Materials, 2021, 407, 124834.	12.4	12
125	Nitrogen-doped carbon dots alleviate the damage from tomato bacterial wilt syndrome: systemic acquired resistance activation and reactive oxygen species scavenging. Environmental Science: Nano, 2021, 8, 3806-3819.	4.3	12
126	Effect of different electrode configurations on the migration of copper ions during the electrokinetic remediation process. Asia-Pacific Journal of Chemical Engineering, 2009, 4, 581-585.	1.5	11

#	Article	IF	CITATIONS
127	Quantifying the dissolution of nanomaterials at the nano-bio interface. Science China Chemistry, 2015, 58, 761-767.	8.2	10
128	Dose-dependent effects of CeO ₂ nanomaterials on tomato plant chemistry and insect herbivore resistance. Environmental Science: Nano, 2021, 8, 3577-3589.	4.3	10
129	<i>In situ</i> synthesis of stretchable and highly stable multi-color carbon-dots/polyurethane composite films for light-emitting devices. RSC Advances, 2020, 10, 1281-1286.	3.6	9
130	Impact of rainfall on the occurrence, spatiotemporal distribution, and partition trend of micropollutants in Taihu Lake, China: Bisphenol A and 4-nonylphenol as examples. Ecotoxicology and Environmental Safety, 2020, 204, 111064.	6.0	9
131	Collagen Fibril-Assembled Skin-Simulated Membrane for Continuous Molecular Separation. ACS Applied Materials & Interfaces, 2022, 14, 7358-7368.	8.0	9
132	Selenium content and nutritional quality of Brassica chinensis L enhanced by selenium engineered nanomaterials: The role of surface charge. Environmental Pollution, 2022, 308, 119582.	7.5	9
133	Cherenkov electromagnetic instability excited by an oscillating relativistic electron beam in ion channel. Physics of Plasmas, 2010, 17, 083114.	1.9	8
134	A multi-method analysis of the interaction between humic acids and heavy metal ions. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2018, 53, 740-751.	1.7	8
135	Solid-State KOH Pretreatment of Corn Straw for Anaerobic Digestion: Methane Yield Enhancement, Potassium Flow Analysis, and Preliminary Economic Assessment. Energy & Fuels, 2019, 33, 11034-11040.	5.1	8
136	Transfer and transformation of CeO ₂ NPs along a terrestrial trophic food chain. Environmental Science: Nano, 2020, 7, 588-598.	4.3	8
137	Phosphate induced surface transformation alleviated the cytotoxicity of Y2O3 nanoparticles to tobacco BY-2 cells. Science of the Total Environment, 2020, 732, 139276.	8.0	8
138	Nanomaterial-induced modulation of hormonal pathways enhances plant cell growth. Environmental Science: Nano, 2022, 9, 1578-1590.	4.3	8
139	Posture recognition of elbow flexion and extension using sEMG signal based on multi-scale entropy. , 2014, , .		7
140	Goos–Hächen Shift in Single Crystal Silicon Induced by the Electroâ€Optic Effects. Physica Status Solidi (B): Basic Research, 2019, 256, 1900188.	1.5	7
141	Fluorescent g-C3N4 nanosheets enhanced photosynthetic efficiency in maize. NanoImpact, 2021, 24, 100363.	4.5	7
142	Adsorption and catalytic degradation of preservative parabens by graphene-family nanomaterials. Science of the Total Environment, 2022, 806, 150520.	8.0	6
143	Motion recognition of the bilateral upper-limb rehabilitation using sEMG based on ensemble EMD. , 2014, , .		5
144	Effects of simulated diagenesis and mineral amendment on the structure, stability and imidacloprid sorption properties of biochars produced at varied temperatures. Chemosphere, 2021, 282, 131003.	8.2	5

#	Article	IF	CITATIONS
145	Triiron Tetrairon Phosphate (Fe7(PO4)6) Nanomaterials Enhanced Flavonoid Accumulation in Tomato Fruits. Nanomaterials, 2022, 12, 1341.	4.1	5
146	High Stability and Strong Fluorescence of Carbon Nanodots as Nanosensor for Hg2+ in Environmental Waters. Bulletin of Environmental Contamination and Toxicology, 2020, 104, 57-63.	2.7	4
147	Nano-biochar modulates the formation of iron plaque through facilitating iron-involved redox reactions on aquatic plant root surfaces. Environmental Science: Nano, 2022, 9, 1974-1985.	4.3	4
148	Hydrophytes may play an important role in sewage disinfection in constructed wetlands. Journal of Water and Environment Technology, 2009, 7, 75-81.	0.7	3
149	Rhizosphere effect of different aquatic plants on phosphorus depletion. Frontiers of Environmental Science and Engineering in China, 2008, 2, 274-279.	0.8	2
150	Pitching Angle Control Method of Underwater Glider Based on Motion Compensation. , 2015, , .		2
151	Silica nanomaterials and earthworms synergistically regulate maize root metabolite profiles <i>via</i> promoting soil Si bioavailability. Environmental Science: Nano, 2021, 8, 3865-3878.	4.3	2
152	Effect of root exudates on the release, surface property, colloidal stability, and phytotoxicity of dissolved black carbon. Ecotoxicology and Environmental Safety, 2022, 239, 113687.	6.0	2
153	Qualitative and quantitative determinations of pyridalyl and metabolites in excrement of two representative Lepidoptera pests. RSC Advances, 2015, 5, 103474-103479.	3.6	1
154	Hybrid energy storage system design for mobile multi-material fused deposition modeling. AIP Advances, 2020, 10, 075322.	1.3	1
155	Electro-optic properties of ITO at a tilted quarter-wave-plate. Optics Communications, 2020, 472, 125896.	2.1	1
156	Hydrocarbon degradation potential of autochthonous bacteria from the Yellow River delta soil. Diqiu Huaxue, 2006, 25, 249-249.	0.5	0
157	Nano-TiO ₂ retarded fetal development by inhibiting transplacental transfer of thyroid hormones in rat. Environmental Science: Nano, 0, , .	4.3	0