Lakshminarayanan Mahadevan

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/4843955/lakshminarayanan-mahadevan-publications-by-year.pdf

Version: 2024-04-24

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

326 papers

24,540 citations

81 h-index

150 g-index

363 ext. papers

28,369 ext. citations

9.5 avg, IF

7.39 L-index

#	Paper	IF	Citations
326	Euclid's Random Walk: Developmental Changes in the Use of Simulation for Geometric Reasoning <i>Cognitive Science</i> , 2022 , 46, e13070	2.2	O
325	A buckling-sheet ring oscillator for electronics-free, multimodal locomotion <i>Science Robotics</i> , 2022 , 7, eabg5812	18.6	4
324	Geometric control of topological dynamics in a singing saw <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2022 , 119, e2117241119	11.5	
323	Totimorphic assemblies from neutrally stable units. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	3
322	The cusp of an apple. <i>Nature Physics</i> , 2021 , 17, 1125-1129	16.2	O
321	Compact reconfigurable kirigami. <i>Physical Review Research</i> , 2021 , 3,	3.9	8
320	Puckering and wrinkling in a growing composite ring. <i>Proceedings of the Royal Society A:</i> Mathematical, Physical and Engineering Sciences, 2021 , 477,	2.4	1
319	An additive algorithm for origami design. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	7
318	Self-organized biotectonics of termite nests. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	2
317	Models of benthic bipedalism. <i>Journal of the Royal Society Interface</i> , 2021 , 18, 20200701	4.1	1
316	Static adhesion hysteresis in elastic structures. <i>Soft Matter</i> , 2021 , 17, 2704-2710	3.6	1
315	Elastic-instability-enabled locomotion. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	4
314	Wallpaper group kirigami. <i>Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences</i> , 2021 , 477, 20210161	2.4	4
313	Feedback control of protein aggregation. Journal of Chemical Physics, 2021, 155, 064102	3.9	0
312	Genetic architecture of floral traits in bee- and hummingbird-pollinated sister species of Aquilegia (columbine). <i>Evolution; International Journal of Organic Evolution</i> , 2021 , 75, 2197-2216	3.8	O
311	Instabilities and patterns in a submerged jelling jet. Soft Matter, 2021, 17, 9745-9754	3.6	0
310	Mechanical Coupling Coordinates the Co-elongation of Axial and Paraxial Tissues in Avian Embryos. <i>Developmental Cell</i> , 2020 , 55, 354-366.e5	10.2	22

(2020-2020)

309	Dynamic morphoskeletons in development. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 11444-11449	11.5	7
308	Early warning signals in motion inference. PLoS Computational Biology, 2020, 16, e1007821	5	
307	Rotation of a submerged finite cylinder moving down a soft incline. Soft Matter, 2020, 16, 4000-4007	3.6	3
306	Self-Excited Motions of Volatile Drops on Swellable Sheets. <i>Physical Review Letters</i> , 2020 , 124, 258002	7.4	21
305	Deterministic and stochastic control of kirigami topology. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 4511-4517	11.5	10
304	Biophysical principles of choanoflagellate self-organization. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 1303-1311	11.5	15
303	Mechanics and kinetics of dynamic instability. <i>ELife</i> , 2020 , 9,	8.9	8
302	Control of connectivity and rigidity in prismatic assemblies. <i>Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences</i> , 2020 , 476, 20200485	2.4	2
301	Poisson Tratio and residual strain of freestanding ultra-thin films. <i>Journal of the Mechanics and Physics of Solids</i> , 2020 , 137, 103821	5	3
300	Flow-Driven Branching in a Frangible Porous Medium. <i>Physical Review Letters</i> , 2020 , 125, 158002	7.4	5
299	Optimal control of aging in complex networks. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 20404-20410	11.5	4
298	Elastohydrodynamic Scaling Law for Heart Rates. <i>Physical Review Letters</i> , 2020 , 125, 058102	7.4	1
297	Suspension Jams in a Leaky Microfluidic Channel. <i>Physical Review Letters</i> , 2020 , 125, 044501	7.4	1
296	Mechanical basis for fibrillar bundle morphology. <i>Soft Matter</i> , 2020 , 16, 9306-9318	3.6	1
295	Coordinated crawling via reinforcement learning. <i>Journal of the Royal Society Interface</i> , 2020 , 17, 20200	149.8	2
294	Early warning signals in motion inference 2020 , 16, e1007821		
293	Early warning signals in motion inference 2020 , 16, e1007821		
292	Early warning signals in motion inference 2020 , 16, e1007821		

291 Early warning signals in motion inference **2020**, 16, e1007821

290	Early warning signals in motion inference 2020 , 16, e1007821		
289	Early warning signals in motion inference 2020 , 16, e1007821		
288	Geometric localization in supported elastic struts. <i>Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences</i> , 2019 , 475, 20190370	2.4	4
287	Genetic and Mechanical Regulation of Intestinal Smooth Muscle Development. Cell, 2019, 179, 90-105.e	2 56.2	44
286	Shape-shifting structured lattices via multimaterial 4D printing. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 20856-20862	11.5	138
285	Hydraulic control of mammalian embryo size and cell fate. <i>Nature</i> , 2019 , 571, 112-116	50.4	111
284	Collective ventilation in honeybee nests. <i>Journal of the Royal Society Interface</i> , 2019 , 16, 20180561	4.1	12
283	Rigidity percolation and geometric information in floppy origami. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 8119-8124	11.5	7
282	Morphogenesis of termite mounds. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 3379-3384	11.5	24
281	The effect of step size on straight-line orientation. <i>Journal of the Royal Society Interface</i> , 2019 , 16, 2019	0481	6
280	Programming shape using kirigami tessellations. <i>Nature Materials</i> , 2019 , 18, 999-1004	27	100
279	Evolution of avian egg shape: underlying mechanisms and the importance of taxonomic scale. <i>Ibis</i> , 2019 , 161, 922-925	1.9	12
278	Spatio-temporal integration in plant tropisms. <i>Journal of the Royal Society Interface</i> , 2019 , 16, 20190038	34.1	13
277	Dynamics of Growth and Form in Prebiotic Vesicles. <i>Physical Review Letters</i> , 2019 , 123, 038102	7.4	11
276	Optimal control strategies for inhibition of protein aggregation. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 14593-14598	11.5	7
275	Random sequential adsorption of spheres on a cylinder. <i>Europhysics Letters</i> , 2019 , 127, 38004	1.6	3
274	Topology, Geometry, and Mechanics of Strongly Stretched and Twisted Filaments: Solenoids, Plectonemes, and Artificial Muscle Fibers. <i>Physical Review Letters</i> , 2019 , 123, 208003	7.4	18

(2018-2019)

273	Controlled gliding and perching through deep-reinforcement-learning. <i>Physical Review Fluids</i> , 2019 , 4,	2.8	27
272	Size control of the inner ear via hydraulic feedback. <i>ELife</i> , 2019 , 8,	8.9	23
271	Spatial control of irreversible protein aggregation. <i>ELife</i> , 2019 , 8,	8.9	16
270	A multiphase theory for spreading microbial swarms and films. ELife, 2019, 8,	8.9	17
269	Computational analysis of size, shape and structure of insect wings. <i>Biology Open</i> , 2019 , 8,	2.2	13
268	Molecular control of macroscopic forces drives formation of the vertebrate hindgut. <i>Nature</i> , 2019 , 565, 480-484	50.4	15
267	Competing failure modes in finite adhesive pads. Soft Matter, 2018, 14, 1771-1779	3.6	7
266	Mechanics and statistics of the worm-like chain. <i>American Journal of Physics</i> , 2018 , 86, 86-94	0.7	16
265	Topology, Geometry, and Mechanics of Z-Plasty. <i>Physical Review Letters</i> , 2018 , 120, 068101	7.4	4
264	A tissue-engineered scale model of the heart ventricle. <i>Nature Biomedical Engineering</i> , 2018 , 2, 930-941		
	A dissue engineered scale model of the heart vehiclicie. Nature biomedical Engineering, 2010, 2, 750-741	19	103
263	Microtubules soften due to cross-sectional flattening. <i>ELife</i> , 2018 , 7,	8.9	29
263			
	Microtubules soften due to cross-sectional flattening. <i>ELife</i> , 2018 , 7, Self-Assembly-Mediated Release of Peptide Nanoparticles through Jets Across Microdroplet Interfaces. <i>ACS Applied Materials & amp; Interfaces</i> , 2018 , 10, 27578-27583 Differential Activity-Driven Instabilities in Biphasic Active Matter. <i>Physical Review Letters</i> , 2018 , 120, 248003	8.9	29
262	Microtubules soften due to cross-sectional flattening. <i>ELife</i> , 2018 , 7, Self-Assembly-Mediated Release of Peptide Nanoparticles through Jets Across Microdroplet Interfaces. <i>ACS Applied Materials & Differential Activity-Driven Instabilities in Biphasic Active Matter. Physical Review Letters</i> , 2018 , 120, 248003 Forward and inverse problems in the mechanics of soft filaments. <i>Royal Society Open Science</i> , 2018 , 5, 171628	8.9 9.5	29
262 261	Microtubules soften due to cross-sectional flattening. <i>ELife</i> , 2018 , 7, Self-Assembly-Mediated Release of Peptide Nanoparticles through Jets Across Microdroplet Interfaces. <i>ACS Applied Materials & Differential Activity-Driven Instabilities in Biphasic Active Matter. Physical Review Letters</i> , 2018 , 120, 248003 Forward and inverse problems in the mechanics of soft filaments. <i>Royal Society Open Science</i> , 2018 ,	8.9 9.5 7.4	29 11 7
262 261 260	Microtubules soften due to cross-sectional flattening. <i>ELife</i> , 2018 , 7, Self-Assembly-Mediated Release of Peptide Nanoparticles through Jets Across Microdroplet Interfaces. <i>ACS Applied Materials & Differential Activity-Driven Instabilities in Biphasic Active Matter. Physical Review Letters</i> , 2018 , 120, 248003 Forward and inverse problems in the mechanics of soft filaments. <i>Royal Society Open Science</i> , 2018 , 5, 171628 Predicting object shape and curvature judgments with a new parameterization of shape. <i>Journal of</i>	8.9 9.5 7.4 3.3	29 11 7
262 261 260 259	Microtubules soften due to cross-sectional flattening. <i>ELife</i> , 2018 , 7, Self-Assembly-Mediated Release of Peptide Nanoparticles through Jets Across Microdroplet Interfaces. <i>ACS Applied Materials & Differential Activity-Driven Instabilities in Biphasic Active Matter. Physical Review Letters</i> , 2018 , 120, 248003 Forward and inverse problems in the mechanics of soft filaments. <i>Royal Society Open Science</i> , 2018 , 5, 171628 Predicting object shape and curvature judgments with a new parameterization of shape. <i>Journal of Vision</i> , 2018 , 18, 422	8.9 9.5 7.4 3.3	29 11 7 58

255	The statistical shape of geometric reasoning. Scientific Reports, 2018, 8, 12906	4.9	3
254	Collective mechanical adaptation of honeybee swarms. <i>Nature Physics</i> , 2018 , 14, 1193-1198	16.2	30
253	Meniscus instabilities in thin elastic layers. <i>Soft Matter</i> , 2018 , 14, 7680-7689	3.6	5
252	Generalized Erd⊠ numbers for network analysis. <i>Royal Society Open Science</i> , 2018 , 5, 172281	3.3	
251	Photosynthetic artificial organelles sustain and control ATP-dependent reactions in a protocellular system. <i>Nature Biotechnology</i> , 2018 , 36, 530-535	44.5	163
250	Reprogrammable Braille on an elastic shell. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 7509-7514	11.5	14
249	Multifunctional ferrofluid-infused surfaces with reconfigurable multiscale topography. <i>Nature</i> , 2018 , 559, 77-82	50.4	146
248	Grasping with a soft glove: intrinsic impedance control in pneumatic actuators. <i>Journal of the Royal Society Interface</i> , 2017 , 14,	4.1	16
247	BMP signaling controls buckling forces to modulate looping morphogenesis of the gut. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, 2277-2282	11.5	49
246	Controlling the Roughness of Langmuir-Blodgett Monolayers. <i>Journal of Physical Chemistry B</i> , 2017 , 121, 5078-5085	3.4	5
245	Optimal strategies for throwing accurately. Royal Society Open Science, 2017, 4, 170136	3.3	12
244	Avian egg shape: Form, function, and evolution. <i>Science</i> , 2017 , 356, 1249-1254	33.3	93
243	On the growth and form of shoots. Journal of the Royal Society Interface, 2017, 14,	4.1	26
242	Controlled growth and form of precipitating microsculptures. <i>Science</i> , 2017 , 355, 1395-1399	33.3	55
241	Excitable Dynamics and Yap-Dependent Mechanical Cues Drive the Segmentation Clock. <i>Cell</i> , 2017 , 171, 668-682.e11	56.2	75
240	Growth patterns for shape-shifting elastic bilayers. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, 11597-11602	11.5	57
239	Solar-powered ventilation of African termite mounds. <i>Journal of Experimental Biology</i> , 2017 , 220, 3260	-33269	32
238	Controllable biomimetic birdsong. Journal of the Royal Society Interface, 2017, 14,	4.1	1

237	Organ size control via hydraulically gated oscillations. <i>Development (Cambridge)</i> , 2017 , 144, 4422-4427	6.6	32
236	Rotation of an immersed cylinder sliding near a thin elastic coating. <i>Physical Review Fluids</i> , 2017 , 2,	2.8	27
235	Active elastohydrodynamics of vesicles in narrow blind constrictions. <i>Physical Review Fluids</i> , 2017 , 2,	2.8	11
234	Spontaneous exfoliation of a drying gel. <i>Soft Matter</i> , 2016 , 12, 7855-7862	3.6	6
233	Optimal switching between geocentric and egocentric strategies in navigation. <i>Royal Society Open Science</i> , 2016 , 3, 160128	3.3	5
232	Biomimetic 4D printing. <i>Nature Materials</i> , 2016 , 15, 413-8	27	1682
231	Programming curvature using origami tessellations. <i>Nature Materials</i> , 2016 , 15, 583-8	27	248
230	Directional memory arises from long-lived cytoskeletal asymmetries in polarized chemotactic cells. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, 1267-72	11.5	47
229	Recovery of locomotion after injury in Drosophila melanogaster depends on proprioception. Journal of Experimental Biology, 2016 , 219, 1760-71	3	34
228	On the growth and form of cortical convolutions. <i>Nature Physics</i> , 2016 , 12, 588-593	16.2	312
227	A geometric model for the periodic undulation of a confined adhesive crack. <i>Soft Matter</i> , 2016 , 12, 1778	8-30	2
226	Pressure-driven occlusive flow of a confined red blood cell. <i>Soft Matter</i> , 2016 , 12, 562-73	3.6	18
225	Elastic instability-mediated actuation by a supra-molecular polymer. <i>Nature Physics</i> , 2016 , 12, 926-930	16.2	31
224	Phototactic guidance of a tissue-engineered soft-robotic ray. <i>Science</i> , 2016 , 353, 158-62	33.3	371
223	Bending and buckling of wet paper. <i>Physics of Fluids</i> , 2016 , 28, 042101	4.4	15
222	Similarity and singularity in adhesive elastohydrodynamic touchdown. <i>Physics of Fluids</i> , 2016 , 28, 01170	24.4	7
221	Self-sustained lift and low friction via soft lubrication. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, 5847-9	11.5	53
220	Optimal control of plates using incompatible strains. <i>Nonlinearity</i> , 2015 , 28, 3153-3174	1.7	15

219	Protein mediated membrane adhesion. <i>Physics of Fluids</i> , 2015 , 27, 051901	4.4	3
218	Feedback-induced phase transitions in active heterogeneous conductors. <i>Physical Review Letters</i> , 2015 , 114, 134501	7.4	5
217	Gait and speed selection in slender inertial swimmers. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 3874-9	11.5	37
216	Oscillation of the velvet worm slime jet by passive hydrodynamic instability. <i>Nature Communications</i> , 2015 , 6, 6292	17.4	16
215	Elastocapillary coalescence of plates and pillars. <i>Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences</i> , 2015 , 471, 20140593	2.4	17
214	Bending gradients: how the intestinal stem cell gets its home. <i>Cell</i> , 2015 , 161, 569-580	56.2	170
213	Dynamics of evaporative colloidal patterning. <i>Physics of Fluids</i> , 2015 , 27, 092105	4.4	22
212	Termite mounds harness diurnal temperature oscillations for ventilation. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 11589-93	11.5	67
211	Elastohydrodynamics of a sliding, spinning and sedimenting cylinder near a soft wall. <i>Journal of Fluid Mechanics</i> , 2015 , 779, 181-196	3.7	37
210	Evaporation-driven ring and film deposition from colloidal droplets. <i>Journal of Fluid Mechanics</i> , 2015 , 781,	3.7	30
209	The organization and control of an evolving interdependent population. <i>Journal of the Royal Society Interface</i> , 2015 , 12, 20150044	4.1	5
208	Elastic Cheerios effect: Self-assembly of cylinders on a soft solid. <i>Europhysics Letters</i> , 2015 , 112, 54001	1.6	10
207	Elastohydrodynamics and Kinetics of Protein Patterning in the Immunological Synapse. <i>PLoS Computational Biology</i> , 2015 , 11, e1004481	5	16
206	Solid friction between soft filaments. <i>Nature Materials</i> , 2015 , 14, 583-8	27	60
205	Fluid-driven fingering instability of a confined elastic meniscus. <i>Europhysics Letters</i> , 2015 , 110, 34001	1.6	9
204	Dynamics of a nanodroplet under a transmission electron microscope. <i>Physics of Fluids</i> , 2014 , 26, 01200	34.4	11
203	Quantifying cell-generated mechanical forces within living embryonic tissues. <i>Nature Methods</i> , 2014 , 11, 183-9	21.6	257
202	Bacillus spores as building blocks for stimuli-responsive materials and nanogenerators. <i>Nature Nanotechnology</i> , 2014 , 9, 137-41	28.7	130

201	Collective thermoregulation in bee clusters. <i>Journal of the Royal Society Interface</i> , 2014 , 11, 20131033	4.1	16
200	Flagellar dynamics of a connected chain of active, polar, Brownian particles. <i>Journal of the Royal Society Interface</i> , 2014 , 11, 20130884	4.1	62
199	Intermittent locomotion as an optimal control strategy. <i>Proceedings of the Royal Society A:</i> Mathematical, Physical and Engineering Sciences, 2014 , 470, 20130535	2.4	10
198	Gyrification from constrained cortical expansion. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 12667-72	11.5	240
197	Scaling macroscopic aquatic locomotion. <i>Nature Physics</i> , 2014 , 10, 758-761	16.2	141
196	Evaporative microclimate driven hygrometers and hygromotors. <i>Europhysics Letters</i> , 2014 , 107, 64002	1.6	13
195	Density-gradient-free microfluidic centrifugation for analytical and preparative separation of nanoparticles. <i>Nano Letters</i> , 2014 , 14, 2365-71	11.5	34
194	Exactly isochoric deformations of soft solids. <i>Europhysics Letters</i> , 2014 , 108, 64001	1.6	2
193	Drops can bounce from perfectly hydrophilic surfaces. <i>Europhysics Letters</i> , 2014 , 108, 24001	1.6	73
192	Statistical mechanics and shape transitions in microscopic plates. <i>Physical Review Letters</i> , 2014 , 112, 04	8 1 041	4
191	Neuromimetic Circuits with Synaptic Devices Based on Strongly Correlated Electron Systems.		
	Physical Review Applied, 2014 , 2,	4.3	41
190	Physical Review Applied, 2014 , 2, Aging in complex interdependency networks. <i>Physical Review E</i> , 2014 , 89, 022811	4·3 2·4	24
190 189		2.4	·
	Aging in complex interdependency networks. <i>Physical Review E</i> , 2014 , 89, 022811	2.4	24
189	Aging in complex interdependency networks. <i>Physical Review E</i> , 2014 , 89, 022811 Lift-off instability during the impact of a drop on a solid surface. <i>Physical Review Letters</i> , 2014 , 112, 134 A proprioceptive neuromechanical theory of crawling. <i>Proceedings of the Royal Society B: Biological</i>	2.4 15 0.1	53
189 188	Aging in complex interdependency networks. <i>Physical Review E</i> , 2014 , 89, 022811 Lift-off instability during the impact of a drop on a solid surface. <i>Physical Review Letters</i> , 2014 , 112, 134 A proprioceptive neuromechanical theory of crawling. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2014 , 281, Models for elastic shells with incompatible strains. <i>Proceedings of the Royal Society A: Mathematical</i> ,	2.4 950.4 4.4	245313
189 188 187	Aging in complex interdependency networks. <i>Physical Review E</i> , 2014 , 89, 022811 Lift-off instability during the impact of a drop on a solid surface. <i>Physical Review Letters</i> , 2014 , 112, 134 A proprioceptive neuromechanical theory of crawling. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2014 , 281, Models for elastic shells with incompatible strains. <i>Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences</i> , 2014 , 470, 20130604 The dynamics of sperm cooperation in a competitive environment. <i>Proceedings of the Royal Society</i>	2.4 4.4 2.4	24531321

183	A pendulum in a flowing soap film. <i>Physics of Fluids</i> , 2013 , 25, 041702	4.4	9
182	Planar morphometry, shear and optimal quasi-conformal mappings. <i>Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences</i> , 2013 , 469, 20120653	2.4	10
181	Villification: how the gut gets its villi. <i>Science</i> , 2013 , 342, 212-8	33.3	323
180	Elastic configurations of self-supported oxide membranes for fuel cells. <i>Journal of Power Sources</i> , 2013 , 222, 359-366	8.9	29
179	Surface sulci in squeezed soft solids. <i>Physical Review Letters</i> , 2013 , 110, 024302	7.4	69
178	The cytoplasm of living cells behaves as a poroelastic material. <i>Nature Materials</i> , 2013 , 12, 253-61	27	389
177	Adaptive fluid-infused porous films with tunable transparency and wettability. <i>Nature Materials</i> , 2013 , 12, 529-34	27	400
176	Hydrodynamics of hemostasis in sickle-cell disease. <i>Physical Review Letters</i> , 2013 , 110, 138104	7.4	9
175	Rationally designed complex, hierarchical microarchitectures. <i>Science</i> , 2013 , 340, 832-7	33.3	275
174	Geometric mechanics of periodic pleated origami. <i>Physical Review Letters</i> , 2013 , 110, 215501	7.4	222
174 173	Geometric mechanics of periodic pleated origami. <i>Physical Review Letters</i> , 2013 , 110, 215501 How a blister heals. <i>Europhysics Letters</i> , 2013 , 104, 46002	7·4 1.6	3
173	How a blister heals. <i>Europhysics Letters</i> , 2013 , 104, 46002 Digital instability of a confined elastic meniscus. <i>Proceedings of the National Academy of Sciences of</i>	1.6	3
173 172	How a blister heals. <i>Europhysics Letters</i> , 2013 , 104, 46002 Digital instability of a confined elastic meniscus. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 12545-8	1.6	3
173 172 171	How a blister heals. <i>Europhysics Letters</i> , 2013 , 104, 46002 Digital instability of a confined elastic meniscus. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 12545-8 Dissolution-driven convection in a HeleBhaw cell. <i>Physics of Fluids</i> , 2013 , 25, 024101 Swarming, swirling and stasis in sequestered bristle-bots. <i>Proceedings of the Royal Society A:</i>	1.6 11.5 4.4	3 37 98
173 172 171 170	How a blister heals. Europhysics Letters, 2013, 104, 46002 Digital instability of a confined elastic meniscus. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 12545-8 Dissolution-driven convection in a HeleBhaw cell. Physics of Fluids, 2013, 25, 024101 Swarming, swirling and stasis in sequestered bristle-bots. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2013, 469, 20120637 Biased migration of confined neutrophil-like cells in asymmetric hydraulic environments.	1.6 11.5 4.4 2.4	3 37 98 60
173 172 171 170 169	How a blister heals. Europhysics Letters, 2013, 104, 46002 Digital instability of a confined elastic meniscus. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 12545-8 Dissolution-driven convection in a HeleBhaw cell. Physics of Fluids, 2013, 25, 024101 Swarming, swirling and stasis in sequestered bristle-bots. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2013, 469, 20120637 Biased migration of confined neutrophil-like cells in asymmetric hydraulic environments. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 21006-11	1.6 11.5 4.4 2.4 11.5	3 37 98 60 65

(2012-2012)

165	Macroscopic magnetic frustration. <i>Physical Review Letters</i> , 2012 , 109, 257203	7.4	28
164	Geometric mechanics of curved crease origami. <i>Physical Review Letters</i> , 2012 , 109, 114301	7.4	82
163	How things get stuck: kinetics, elastohydrodynamics, and soft adhesion. <i>Physical Review Letters</i> , 2012 , 108, 226104	7.4	30
162	Strategies for cell shape control in tip-growing cells. <i>American Journal of Botany</i> , 2012 , 99, 1577-82	2.7	19
161	Actin network growth under load. <i>Biophysical Journal</i> , 2012 , 102, 1049-58	2.9	13
160	Banding, excitability and chaos in active nematic suspensions. <i>Nonlinearity</i> , 2012 , 25, 2245-2269	1.7	60
159	Deformation and capillary self-repair of carbon nanotube brushes. <i>Carbon</i> , 2012 , 50, 5618-5620	10.4	12
158	How the cucumber tendril coils and overwinds. <i>Science</i> , 2012 , 337, 1087-91	33.3	252
157	Geometric control of rippling in supported polymer nanolines. <i>Nano Letters</i> , 2012 , 12, 1516-21	11.5	9
156	Discovering communities through friendship. <i>PLoS ONE</i> , 2012 , 7, e38704	3.7	9
156	Discovering communities through friendship. <i>PLoS ONE</i> , 2012 , 7, e38704 Twisting graphene nanoribbons into carbon nanotubes. <i>Physical Review B</i> , 2012 , 85,	3.3	9
155	Twisting graphene nanoribbons into carbon nanotubes. <i>Physical Review B</i> , 2012 , 85,	3.3	68
155 154	Twisting graphene nanoribbons into carbon nanotubes. <i>Physical Review B</i> , 2012 , 85, Scale and nature of sulcification patterns. <i>Physical Review Letters</i> , 2012 , 109, 025701 A biophysical indicator of vaso-occlusive risk in sickle cell disease. <i>Science Translational Medicine</i> ,	3·3 7·4	68 47
155 154 153	Twisting graphene nanoribbons into carbon nanotubes. <i>Physical Review B</i> , 2012 , 85, Scale and nature of sulcification patterns. <i>Physical Review Letters</i> , 2012 , 109, 025701 A biophysical indicator of vaso-occlusive risk in sickle cell disease. <i>Science Translational Medicine</i> , 2012 , 4, 123ra26 Multi-stability of free spontaneously curved anisotropic strips. <i>Proceedings of the Royal Society A:</i>	3·3 7·4 17·5	68 47 82
155 154 153	Twisting graphene nanoribbons into carbon nanotubes. <i>Physical Review B</i> , 2012 , 85, Scale and nature of sulcification patterns. <i>Physical Review Letters</i> , 2012 , 109, 025701 A biophysical indicator of vaso-occlusive risk in sickle cell disease. <i>Science Translational Medicine</i> , 2012 , 4, 123ra26 Multi-stability of free spontaneously curved anisotropic strips. <i>Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences</i> , 2012 , 468, 511-530 Physical basis for the adaptive flexibility of Bacillus spore coats. <i>Journal of the Royal Society</i>	3·3 7·4 17·5	68 47 82 23
155 154 153 152 151	Twisting graphene nanoribbons into carbon nanotubes. <i>Physical Review B</i> , 2012 , 85, Scale and nature of sulcification patterns. <i>Physical Review Letters</i> , 2012 , 109, 025701 A biophysical indicator of vaso-occlusive risk in sickle cell disease. <i>Science Translational Medicine</i> , 2012 , 4, 123ra26 Multi-stability of free spontaneously curved anisotropic strips. <i>Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences</i> , 2012 , 468, 511-530 Physical basis for the adaptive flexibility of Bacillus spore coats. <i>Journal of the Royal Society Interface</i> , 2012 , 9, 3156-60 Evolution of spur-length diversity in Aquilegia petals is achieved solely through cell-shape	3·3 7·4 17·5 2·4 4·1	68 47 82 23 28

147	The branch with the furthest reach. <i>Europhysics Letters</i> , 2012 , 97, 14005	1.6	6
146	A method for tensile tests of biological tissues at the mesoscale. <i>Journal of Applied Physics</i> , 2012 , 111, 074704	2.5	4
145	Flow-induced channelization in a porous medium. <i>Europhysics Letters</i> , 2012 , 98, 58003	1.6	21
144	The size, shape, and dynamics of cellular blebs. <i>Europhysics Letters</i> , 2012 , 100, 28004	1.6	21
143	Structural dynamics of an actin spring. <i>Biophysical Journal</i> , 2011 , 100, 839-44	2.9	4
142	Dynamic instability of a growing adsorbed polymorphic filament. <i>Biophysical Journal</i> , 2011 , 101, 267-75	2.9	7
141	Probability, geometry, and dynamics in the toss of a thick coin. <i>American Journal of Physics</i> , 2011 , 79, 1195-1201	0.7	7
140	On the growth and form of the gut. <i>Nature</i> , 2011 , 476, 57-62	50.4	325
139	Excitable patterns in active nematics. Physical Review Letters, 2011, 106, 218101	7.4	82
138	Hydrodynamics of writing with ink. <i>Physical Review Letters</i> , 2011 , 107, 264501	7.4	47
137	Asymmetric network connectivity using weighted harmonic averages. <i>Europhysics Letters</i> , 2011 , 93, 400	0<u>12</u>6	5
136	Planar controlled gliding, tumbling and descent. <i>Journal of Fluid Mechanics</i> , 2011 , 689, 489-516	3.7	9
135	New encoding schemes with infofuses. <i>Advanced Materials</i> , 2011 , 23, 4851-6	24	5
134	The Fppl-von Keme equations for plates with incompatible strains. <i>Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences</i> , 2011 , 467, 402-426	2.4	63
133	A simple model for nanofiber formation by rotary jet-spinning. <i>Applied Physics Letters</i> , 2011 , 99, 203107	3.4	88
132	Shock-driven jamming and periodic fracture of particulate rafts. <i>Europhysics Letters</i> , 2011 , 96, 36008	1.6	19
131	Forced tearing of ductile and brittle thin sheets. <i>Physical Review Letters</i> , 2011 , 107, 245502	7.4	11
130	How wet paper curls. <i>Europhysics Letters</i> , 2011 , 93, 54001	1.6	51

129	Unfolding the sulcus. <i>Physical Review Letters</i> , 2011 , 106, 105702	7.4	162
128	Elastohydrodynamics of wet bristles, carpets and brushes. <i>Proceedings of the Royal Society A:</i> Mathematical, Physical and Engineering Sciences, 2011 , 467, 1665-1685	2.4	30
127	The shallow turn of a worm. <i>Journal of Experimental Biology</i> , 2011 , 214, 1554-9	3	20
126	Growth, geometry, and mechanics of a blooming lily. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 5516-21	11.5	143
125	Influence of feedback on the stochastic evolution of simple climate systems. <i>Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences</i> , 2010 , 466, 993-1003	2.4	6
124	A generalized theory of viscous and inviscid flutter. <i>Proceedings of the Royal Society A:</i> Mathematical, Physical and Engineering Sciences, 2010 , 466, 141-156	2.4	23
123	Statistical mechanics of developable ribbons. <i>Physical Review Letters</i> , 2010 , 104, 238104	7.4	34
122	Physiological and pathological population dynamics of circulating human red blood cells. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2010 , 107, 20587-92	11.5	63
121	Control of shape and size of nanopillar assembly by adhesion-mediated elastocapillary interaction. <i>ACS Nano</i> , 2010 , 4, 6323-31	16.7	57
120	Why subduction zones are curved. <i>Tectonics</i> , 2010 , 29, n/a-n/a	4.3	39
119	Cooperative adhesion and friction of compliant nanohairs. <i>Nano Letters</i> , 2010 , 10, 4509-13	11.5	41
118	Geometry, mechanics, and electronics of singular structures and wrinkles in graphene. <i>Physical Review Letters</i> , 2010 , 105, 156603	7.4	152
117	Nanopottery: coiling of electrospun polymer nanofibers. <i>Nano Letters</i> , 2010 , 10, 2138-40	11.5	70
116	Shape and motion of a ruck in a rug. <i>Physical Review Letters</i> , 2009 , 103, 174302	7.4	23
115	Animal cell hydraulics. <i>Journal of Cell Science</i> , 2009 , 122, 3233-41	5.3	66
114	Nonequilibrium scale selection mechanism for columnar jointing. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, 387-92	11.5	85
113	Statistical dynamics of flowing red blood cells by morphological image processing. <i>PLoS Computational Biology</i> , 2009 , 5, e1000288	5	41
112	The shape of a long leaf. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, 22049-54	11.5	171

111	Hygromorphs: from pine cones to biomimetic bilayers. <i>Journal of the Royal Society Interface</i> , 2009 , 6, 951-7	4.1	275
110	Shape and dynamics of tip-growing cells. <i>Current Biology</i> , 2009 , 19, 2102-7	6.3	74
109	Cell shape changes indicate a role for extrinsic tensile forces in Drosophila germ-band extension. <i>Nature Cell Biology</i> , 2009 , 11, 859-64	23.4	178
108	Tissue tectonics: morphogenetic strain rates, cell shape change and intercalation. <i>Nature Methods</i> , 2009 , 6, 458-64	21.6	200
107	Self-organization of a mesoscale bristle into ordered, hierarchical helical assemblies. <i>Science</i> , 2009 , 323, 237-40	33.3	323
106	Infochemistry: encoding information as optical pulses using droplets in a microfluidic device. <i>Journal of the American Chemical Society</i> , 2009 , 131, 12420-9	16.4	26
105	Botanical ratchets. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2009 , 276, 2243-7	4.4	28
104	Calcium regulation of an actin spring. <i>Biophysical Journal</i> , 2009 , 97, 1125-9	2.9	6
103	Controlling the orientation and synaptic differentiation of myotubes with micropatterned substrates. <i>Biophysical Journal</i> , 2009 , 97, 2771-9	2.9	39
102	Flip-flop-induced relaxation of bending energy: implications for membrane remodeling. <i>Biophysical Journal</i> , 2009 , 97, 3113-22	2.9	101
101	Strain-induced alignment in collagen gels. <i>PLoS ONE</i> , 2009 , 4, e5902	3.7	270
100	Elasticity of floppy and stiff random networks. <i>Physical Review Letters</i> , 2008 , 101, 215501	7.4	154
99	Power-limited contraction dynamics of Vorticella convallaria: an ultrafast biological spring. <i>Biophysical Journal</i> , 2008 , 94, 265-72	2.9	40
98	Life and times of a cellular bleb. <i>Biophysical Journal</i> , 2008 , 94, 1836-53	2.9	318
97	A quantitative analysis of contractility in active cytoskeletal protein networks. <i>Biophysical Journal</i> , 2008 , 94, 3126-36	2.9	227
96	Dynamics of chromatin decondensation reveals the structural integrity of a mechanically prestressed nucleus. <i>Biophysical Journal</i> , 2008 , 95, 3028-35	2.9	95
95	Implications of a poroelastic cytoplasm for the dynamics of animal cell shape. <i>Seminars in Cell and Developmental Biology</i> , 2008 , 19, 215-23	7.5	104
94	How kelp produce blade shapes suited to different flow regimes: A new wrinkle. <i>Integrative and Comparative Biology</i> , 2008 , 48, 834-51	2.8	101

(2006-2008)

93	Polymer science and biology: structure and dynamics at multiple scales. <i>Faraday Discussions</i> , 2008 , 139, 9-19; discussion 105-28, 419-20	3.6	11
92	Quantifying the relation between bond number and myoblast proliferation. <i>Faraday Discussions</i> , 2008 , 139, 53-70; discussion 105-28, 419-20	3.6	18
91	Localized and extended deformations of elastic shells. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2008 , 105, 7913-8	11.5	95
90	Signal processing by the HOG MAP kinase pathway. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2008 , 105, 7165-70	11.5	2 00
89	Optimal vein density in artificial and real leaves. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2008 , 105, 9140-4	11.5	129
88	Limbless undulatory propulsion on land. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2008 , 105, 3179-84	11.5	63
87	Equilibrium of an elastically confined liquid drop. Journal of Applied Physics, 2008, 103, 093519	2.5	25
86	Force of an actin spring. <i>Biophysical Journal</i> , 2007 , 92, 3729-33	2.9	19
85	Nonlinear mechanics of soft fibrous networks. <i>Journal of the Royal Society Interface</i> , 2007 , 4, 99-106	4.1	74
84	The universal dynamics of cell spreading. <i>Current Biology</i> , 2007 , 17, 694-9	6.3	204
83	The universal dynamics of cell spreading. <i>Current Biology</i> , 2007 , 17, 694-9 Settling and swimming of flexible fluid-lubricated foils. <i>Physical Review Letters</i> , 2007 , 99, 224503	6. ₃	204
·			24
83	Settling and swimming of flexible fluid-lubricated foils. <i>Physical Review Letters</i> , 2007 , 99, 224503 Sickle cell vasoocclusion and rescue in a microfluidic device. <i>Proceedings of the National Academy of</i>	7.4	24
83	Settling and swimming of flexible fluid-lubricated foils. <i>Physical Review Letters</i> , 2007 , 99, 224503 Sickle cell vasoocclusion and rescue in a microfluidic device. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2007 , 104, 20496-500 Mechanosensation and mechanical load modulate the locomotory gait of swimming C. elegans.	7.4	24 144
83 82 81	Settling and swimming of flexible fluid-lubricated foils. <i>Physical Review Letters</i> , 2007 , 99, 224503 Sickle cell vasoocclusion and rescue in a microfluidic device. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2007 , 104, 20496-500 Mechanosensation and mechanical load modulate the locomotory gait of swimming C. elegans. <i>Journal of Experimental Biology</i> , 2007 , 210, 2383-9 Sensorimotor control during isothermal tracking in Caenorhabditis elegans. <i>Journal of Experimental</i>	7·4 11.5	24 144 82
83 82 81 80	Settling and swimming of flexible fluid-lubricated foils. <i>Physical Review Letters</i> , 2007 , 99, 224503 Sickle cell vasoocclusion and rescue in a microfluidic device. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2007 , 104, 20496-500 Mechanosensation and mechanical load modulate the locomotory gait of swimming C. elegans. <i>Journal of Experimental Biology</i> , 2007 , 210, 2383-9 Sensorimotor control during isothermal tracking in Caenorhabditis elegans. <i>Journal of Experimental Biology</i> , 2007 , 210, 3696-3696	7·4 11.5 3	24 144 82
83 82 81 80	Settling and swimming of flexible fluid-lubricated foils. <i>Physical Review Letters</i> , 2007 , 99, 224503 Sickle cell vasoocclusion and rescue in a microfluidic device. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2007 , 104, 20496-500 Mechanosensation and mechanical load modulate the locomotory gait of swimming C. elegans. <i>Journal of Experimental Biology</i> , 2007 , 210, 2383-9 Sensorimotor control during isothermal tracking in Caenorhabditis elegans. <i>Journal of Experimental Biology</i> , 2007 , 210, 3696-3696 Persistence of a pinch in a pipe. <i>Europhysics Letters</i> , 2007 , 77, 40003	7.4 11.5 3 1.6	24 144 82 2

75	Microtubules can bear enhanced compressive loads in living cells because of lateral reinforcement. Journal of Cell Biology, 2006 , 173, 733-41	7.3	503
74	Fall and rise of a viscoelastic filament. <i>Journal of Fluid Mechanics</i> , 2006 , 563, 283	3.7	6
73	Capillary rise between elastic sheets. <i>Journal of Fluid Mechanics</i> , 2006 , 548, 141	3.7	106
72	Crack-front instability in a confined elastic film. <i>Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences</i> , 2006 , 462, 3233-3251	2.4	35
71	Mechanics of interfacial composite materials. <i>Langmuir</i> , 2006 , 22, 10204-8	4	81
70	Superficial wrinkles in stretched, drying gelatin films. <i>Langmuir</i> , 2006 , 22, 3622-6	4	36
69	A simple microscopic model for the dynamics of adhesive failure. <i>Langmuir</i> , 2006 , 22, 163-8	4	3
68	Physical limits and design principles for plant and fungal movements. <i>Science</i> , 2005 , 308, 1308-10	33.3	226
67	Hydrodynamical models for the chaotic dripping faucet. Journal of Fluid Mechanics, 2005, 526, 1-17	3.7	41
66	Confined developable elastic surfaces: cylinders, cones and the Elastica. <i>Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences</i> , 2005 , 461, 671-700	2.4	77
65	Measuring the work of adhesion between a soft confined film and a flexible plate. <i>Langmuir</i> , 2005 , 21, 1277-81	4	66
64	New directions in mechanics. <i>Mechanics of Materials</i> , 2005 , 37, 231-259	3.3	104
63	Nested self-similar wrinkling patterns in skins. <i>Nature Materials</i> , 2005 , 4, 293-7	27	662
62	How the Venus flytrap snaps. <i>Nature</i> , 2005 , 433, 421-5	50.4	672
61	Non-equilibration of hydrostatic pressure in blebbing cells. <i>Nature</i> , 2005 , 435, 365-9	50.4	470
60	Soft lubrication: The elastohydrodynamics of nonconforming and conforming contacts. <i>Physics of Fluids</i> , 2005 , 17, 092101	4.4	95
59	Magnetic self-assembly of three-dimensional surfaces from planar sheets. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2005 , 102, 3924-9	11.5	112
58	Solenoids and plectonemes in stretched and twisted elastomeric filaments. <i>Physical Review Letters</i> , 2005 , 95, 057801	7.4	21

(2004-2005)

57	Onset of buckling in drying droplets of colloidal suspensions. <i>Physical Review Letters</i> , 2005 , 94, 018302	7.4	248
56	Self-organized origami. <i>Science</i> , 2005 , 307, 1740	33.3	172
55	The Cheerios effect American Journal of Physics, 2005, 73, 817-825	0.7	287
54	Gravitational collapse of colloidal gels. <i>Physical Review Letters</i> , 2005 , 94, 218302	7.4	88
53	Fluid-flow-induced flutter of a flag. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2005 , 102, 1829-34	11.5	201
52	Popliteal rippling of layered elastic tubes and scrolls. <i>Europhysics Letters</i> , 2004 , 65, 323-329	1.6	14
51	Elasticity of an interfacial particle raft. <i>Europhysics Letters</i> , 2004 , 68, 212-218	1.6	189
50	Scaling of F-actin network rheology to probe single filament elasticity and dynamics. <i>Physical Review Letters</i> , 2004 , 93, 188102	7.4	140
49	Peeling, healing, and bursting in a lubricated elastic sheet. <i>Physical Review Letters</i> , 2004 , 93, 137802	7.4	60
48	Soft lubrication. <i>Physical Review Letters</i> , 2004 , 92, 245509	7.4	76
48	Soft lubrication. <i>Physical Review Letters</i> , 2004 , 92, 245509 The elements of draping. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2004 , 101, 1806-10	7.4	76 55
	The elements of draping. Proceedings of the National Academy of Sciences of the United States of	, , 	
47	The elements of draping. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2004 , 101, 1806-10	11.5	55
47 46	The elements of draping. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 1806-10 Structural basis for cooperative DNA binding by CAP and lac repressor. Structure, 2004, 12, 123-32 Dynamics of poroelastic filaments. Proceedings of the Royal Society A: Mathematical, Physical and	11.5 5.2	55
47 46 45	The elements of draping. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 1806-10 Structural basis for cooperative DNA binding by CAP and lac repressor. Structure, 2004, 12, 123-32 Dynamics of poroelastic filaments. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2004, 460, 1995-2020 Peeling from a biomimetically patterned thin elastic film. Proceedings of the Royal Society A:	11.5 5.2 2.4	55 48 28
47 46 45 44	The elements of draping. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 1806-10 Structural basis for cooperative DNA binding by CAP and lac repressor. Structure, 2004, 12, 123-32 Dynamics of poroelastic filaments. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2004, 460, 1995-2020 Peeling from a biomimetically patterned thin elastic film. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2004, 460, 2725-2735	11.5 5.2 2.4	55 48 28 163
47 46 45 44 43	The elements of draping. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 1806-10 Structural basis for cooperative DNA binding by CAP and lac repressor. Structure, 2004, 12, 123-32 Dynamics of poroelastic filaments. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2004, 460, 1995-2020 Peeling from a biomimetically patterned thin elastic film. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2004, 460, 2725-2735 The wall-induced motion of a floating flexible train. Journal of Fluid Mechanics, 2004, 502, 89-98 Biomimetic ratcheting motion of a soft, slender, sessile gel. Proceedings of the National Academy of	11.5 5.2 2.4 2.4	55 48 28 163

39	Elastic behavior of cross-linked and bundled actin networks. Science, 2004, 304, 1301-5	33.3	933
38	Bending stiffness of a crystalline actin bundle. <i>Journal of Molecular Biology</i> , 2004 , 337, 255-61	6.5	53
37	Multiscale Method for Simulating Protein-DNA Complexes. <i>Multiscale Modeling and Simulation</i> , 2004 , 2, 527-553	1.8	64
36	The force-velocity relationship for the actin-based motility of Listeria monocytogenes. <i>Current Biology</i> , 2003 , 13, 329-32	6.3	79
35	The viscous catenary. Journal of Fluid Mechanics, 2003, 478, 71-80	3.7	29
34	Geometry and physics of wrinkling. <i>Physical Review Letters</i> , 2003 , 90, 074302	7.4	929
33	Kinks, rings, and rackets in filamentous structures. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2003 , 100, 12141-6	11.5	151
32	Stored elastic energy powers the 60-microm extension of the Limulus polyphemus sperm actin bundle. <i>Journal of Cell Biology</i> , 2003 , 162, 1183-8	7.3	20
31	Crack street: the cycloidal wake of a cylinder tearing through a thin sheet. <i>Physical Review Letters</i> , 2003 , 91, 215507	7.4	28
30	Thin films. Wrinkling of an elastic sheet under tension. <i>Nature</i> , 2002 , 419, 579-80	50.4	294
30	Thin films. Wrinkling of an elastic sheet under tension. <i>Nature</i> , 2002 , 419, 579-80 Shocks in sand flowing in a silo. <i>Journal of Fluid Mechanics</i> , 2002 , 452, 293-301	50.4 3.7	294
			· .
29	Shocks in sand flowing in a silo. <i>Journal of Fluid Mechanics</i> , 2002 , 452, 293-301	3.7	15
29	Shocks in sand flowing in a silo. <i>Journal of Fluid Mechanics</i> , 2002 , 452, 293-301 Four-phase merging in sessile compound drops. <i>Journal of Fluid Mechanics</i> , 2002 , 451, 411-420	3.7	15
29 28 27	Shocks in sand flowing in a silo. <i>Journal of Fluid Mechanics</i> , 2002 , 452, 293-301 Four-phase merging in sessile compound drops. <i>Journal of Fluid Mechanics</i> , 2002 , 451, 411-420 BUCKLING INSTABILITIES IN THIN VISCOUS SHEETS 2002 , 249-249	3.7	15 31
29 28 27 26	Shocks in sand flowing in a silo. <i>Journal of Fluid Mechanics</i> , 2002 , 452, 293-301 Four-phase merging in sessile compound drops. <i>Journal of Fluid Mechanics</i> , 2002 , 451, 411-420 BUCKLING INSTABILITIES IN THIN VISCOUS SHEETS 2002 , 249-249 Return Map for the Chaotic Dripping Faucet. <i>Progress of Theoretical Physics Supplement</i> , 2000 , 139, 507	3·7 3·7	15 31 16
29 28 27 26 25	Shocks in sand flowing in a silo. <i>Journal of Fluid Mechanics</i> , 2002 , 452, 293-301 Four-phase merging in sessile compound drops. <i>Journal of Fluid Mechanics</i> , 2002 , 451, 411-420 BUCKLING INSTABILITIES IN THIN VISCOUS SHEETS 2002 , 249-249 Return Map for the Chaotic Dripping Faucet. <i>Progress of Theoretical Physics Supplement</i> , 2000 , 139, 507 Folding of viscous sheets and filaments. <i>Europhysics Letters</i> , 2000 , 52, 532-538	3.7 3.7 -516	15 31 16 50

21	Periodic Folding of Thin Sheets. SIAM Review, 1999, 41, 115-131	7.4	18
20	Elastic Rod Model of a DNA Loop in the Lac Operon. <i>Physical Review Letters</i> , 1999 , 83, 4900-4903	7·4	71
19	Conical dislocations in crumpling. <i>Nature</i> , 1999 , 401, 46-49	50.4	158
18	Axial instability of a free-surface front in a partially filled horizontal rotating cylinder. <i>Physics of Fluids</i> , 1999 , 11, 97-106	4.4	75
17	Fluid Bope tricklinvestigated. <i>Nature</i> , 1998 , 392, 140-140	50.4	78
16	Conical Surfaces and Crescent Singularities in Crumpled Sheets. <i>Physical Review Letters</i> , 1998 , 80, 2358-	-2 ₇ 3. 6 .1	143
15	Colliding Waves in a Model Excitable Medium: Preservation, Annihilation, and Bifurcation. <i>Physical Review Letters</i> , 1997 , 79, 2803-2806	7.4	40
14	Experimental study of coating flows in a partially-filled horizontally Rotating cylinder. <i>Experiments in Fluids</i> , 1997 , 23, 1-13	2.5	121
13	Comment on "Behavior of a falling paper". <i>Physical Review Letters</i> , 1995 , 75, 1420	7.4	13
12	Periodic Folding of Thin Sheets. SIAM Journal on Applied Mathematics, 1995, 55, 1609-1624	1.8	10
11	Geometric Mechanics of Curved Crease Origami		1
10	Integrative neuromechanics of crawling in D. melanogaster larvae. <i>ELife</i> ,5,	8.9	17
9	A mechanochemical model recapitulates distinct vertebrate gastrulation modes		3
8	Reconstruction of distinct vertebrate gastrulation modes via modulation of key cell behaviours in the chick embryo		2
7	Synchronized oscillations, metachronal waves, and jammed clusters in sterically interacting active filament arrays		1
6	Hydraulic control of embryo size, tissue shape and cell fate		1
5	Mechanical Coupling Coordinates the Co-elongation of Axial and Paraxial Tissues in Avian Embryos		2
4	Biophysical principles of choanoflagellate self-organization		1

3	Motility-gradient induced e	longation of the vertebrate embryo

4

- Genetic architecture of floral traits in bee- and hummingbird-pollinated sister species of Aquilegia (columbine) $_1$
- Safeguarding human Wildlife cooperation. Conservation Letters,

6.9