Jian Liu

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/4843950/jian-liu-publications-by-year.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 295
 25,019
 69
 152

 papers
 citations
 h-index
 g-index

 319
 28,288
 9.8
 7.36

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
295	Serum Metabolic Fingerprints on Bowl-Shaped Submicroreactor Chip for Chemotherapy Monitoring <i>ACS Nano</i> , 2022 ,	16.7	7
294	Micelle-templating interfacial self-assembly of two-dimensional mesoporous nanosheets for sustainable H2O2 electrosynthesis. <i>Sustainable Materials and Technologies</i> , 2022 , e00398	5.3	2
293	Enhancing the heterojunction component-interaction by in-situ hydrothermal growth toward photocatalytic hydrogen evolution <i>Journal of Colloid and Interface Science</i> , 2022 , 614, 367-377	9.3	O
292	Micro-terminal regulation in nanoreactors for the construction of tantalum pentoxide single-crystal ordered networks with promoting enhanced hydrogen evolution performance. <i>Chemical Engineering Journal</i> , 2022 , 431, 134139	14.7	2
291	Nitrogen vacancy-rich porous carbon nitride nanosheets for efficient photocatalytic H2O2 production. <i>Materials Today Energy</i> , 2022 , 24, 100926	7	3
290	The structure activity correlation of single-site Ni catalysts dispersed onto porous carbon spheres toward electrochemical CO2 reduction. <i>Fuel</i> , 2022 , 321, 124043	7.1	1
289	Carbon-supported Fe catalysts with well-defined active sites for highly selective alcohol production from Fischer-Tropsch synthesis. <i>Applied Catalysis B: Environmental</i> , 2022 , 312, 121393	21.8	4
288	Enhanced low-temperature CO2 methanation performance of Ni/ZrO2 catalysts via a phase engineering strategy. <i>Chemical Engineering Journal</i> , 2022 , 137031	14.7	O
287	Modulating the electronic structures of layer-expanded MoS2 nanoreactor via cobalt doping and carbon intercalation for enhanced electrocatalytic hydrogen evolution. <i>Chemical Engineering Journal</i> , 2022 , 446, 137080	14.7	1
286	Spatial Location and Microenvironment Engineering of Pt-CeO2 Nanoreactors for Selective Hydrogenation of Cinnamaldehyde to Cinnamyl Alcohol. <i>Journal of Physical Chemistry C</i> , 2021 , 125, 226	503:8 503:22(51 0
285	Nanospatial Charge Modulation of Monodispersed Polymeric Microsphere Photocatalysts for Exceptional Hydrogen Peroxide Production. <i>Small</i> , 2021 , 17, e2103224	11	8
284	Sustainable Carbon Materials toward Emerging Applications Small Methods, 2021, 5, e2001250	12.8	12
283	All-pH Stable Sandwich-Structured MoO2/MoS2/C Hollow Nanoreactors for Enhanced Electrochemical Hydrogen Evolution. <i>Advanced Functional Materials</i> , 2021 , 31, 2101715	15.6	29
282	Stable Hollow-Structured Silicon Suboxide-Based Anodes toward High-Performance Lithium-Ion Batteries. <i>Advanced Functional Materials</i> , 2021 , 31, 2101796	15.6	32
281	Fabrication Method-Engineered CuZnO/SiO2 Catalysts with Highly Dispersed Metal Nanoparticles toward Efficient Utilization of Methanol as a Hydrogen Carrier. <i>Advanced Energy and Sustainability Research</i> , 2021 , 2, 2100082	1.6	O
280	Exceptional Electrochemical HER Performance with Enhanced Electron Transfer between Ru Nanoparticles and Single Atoms Dispersed on a Carbon Substrate. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 16044-16050	16.4	65
279	Microenvironment and Nanoreactor Engineering of Single-Site Metal Catalysts for Electrochemical CO2 Reduction. <i>Energy & Co2</i> 8 (2021), 35, 9795-9808	4.1	6

(2021-2021)

Exceptional Electrochemical HER Performance with Enhanced Electron Transfer between Ru 278 Nanoparticles and Single Atoms Dispersed on a Carbon Substrate. *Angewandte Chemie*, **2021**, 133, 1618 $^{\circ}$. 1618 $^{\circ}$ Non-spherical abrasives with ordered mesoporous structures for chemical mechanical polishing. 7.1 4 Science China Materials, 2021, 64, 2747-2763 A Nillo sulfide nanosheet/carbon nanotube hybrid film for high-energy and high-power flexible 276 10.4 17 supercapacitors. Carbon, 2021, 178, 355-362 Nitrogen-doped porous carbon-encapsulated copper composite for efficient reduction of 9.3 14 4-nitrophenol. Journal of Colloid and Interface Science, 2021, 594, 254-264 Atomic Pyridinic Nitrogen Sites Promoting Levulinic Acid Hydrogenations over Double-Shelled 274 11 9 Hollow Ru/C Nanoreactors. Small, 2021, 17, e2101271 Engineering of Yolk/Core-Shell Structured Nanoreactors for Thermal Hydrogenations. Small, 2021, 11 29 273 17, e1906250 Engineering Ni/SiO2 catalysts for enhanced CO2 methanation. Fuel, 2021, 285, 119151 272 7.1 31 Stabilization of heterogeneous hydrogenation catalysts for the aqueous-phase reactions of 11.3 renewable feedstocks. Chinese Journal of Catalysis, 2021, 42, 694-709 The design of phase change materials with carbon aerogel composites for multi-responsive thermal 270 13 31 energy capture and storage. Journal of Materials Chemistry A, 2021, 9, 1213-1220 Fe atoms anchored on defective nitrogen doped hollow carbon spheres as efficient electrocatalysts 269 10 31 for oxygen reduction reaction. Nano Research, 2021, 14, 1069-1077 Engineering heterogenous catalysts for chemical CO2 utilization: Lessons from thermal catalysis 268 11 and advantages of yolk@shell structured nanoreactors. Journal of Energy Chemistry, 2021, 57, 304-324 A template-free method to synthesis high density iron single atoms anchored on carbon nanotubes 267 16 17.1 for high temperature polymer electrolyte membrane fuel cells. Nano Energy, 2021, 80, 105534 266 Carbon-based catalysts for Fischer-Tropsch synthesis. Chemical Society Reviews, 2021, 50, 2337-2366 58.5 48 Atomic/molecular layer deposition for energy storage and conversion. Chemical Society Reviews, 265 58.5 39 2021, 50, 3889-3956 Yolk-Shell Structured Functional Nanoreactors for Organic Transformations. Nanostructure Science 264 0.9 and Technology, 2021, 379-394 Engineering nanoreactors for metal@halcogen batteries. Energy and Environmental Science, 2021, 263 26 35.4 14, 540-575 Modular Construction of Prussian Blue Analog and TiO Dual-Compartment Janus Nanoreactor for 262 13.6 24 Efficient Photocatalytic Water Splitting. Advanced Science, 2021, 8, 2001987 Yolk@Shell Materials for CO2 Conversion: Chemical and Photochemical Applications 2021, 361-383 261

260	Robust nickel silicate catalysts with high Ni loading for CO methanation. <i>Chemistry - an Asian Journal</i> , 2021 , 16, 678-689	4.5	9
259	Porous Carbon Nitride Thin Strip: Precise Carbon Doping Regulating Delocalized Electron Induces Elevated Photocatalytic Hydrogen Evolution. <i>Small</i> , 2021 , 17, e2006622	11	26
258	Precisely Engineering Architectures of Co/C Sub-Microreactors for Selective Syngas Conversion. <i>Small</i> , 2021 , 17, e2100082	11	7
257	Mesoscale Diffusion Enhancement of Carbon-Bowl-Shaped Nanoreactor toward High-Performance Electrochemical HO Production. <i>ACS Applied Materials & Amp; Interfaces</i> , 2021 , 13, 39763-39771	9.5	12
256	Electrochemical release of catalysts in nanoreactors for solid sulfur redox reactions in room-temperature sodium-sulfur batteries. <i>Cell Reports Physical Science</i> , 2021 , 2, 100539	6.1	9
255	Flexible carbon nanofiber film with diatomic Fe-Co sites for efficient oxygen reduction and evolution reactions in wearable zinc-air batteries. <i>Nano Energy</i> , 2021 , 87, 106147	17.1	26
254	Porous Inorganic Materials for Bioanalysis and Diagnostic Applications. <i>ACS Biomaterials Science and Engineering</i> , 2021 ,	5.5	2
253	Carbon precursors in coal tar: Extraction and preparation of carbon materials. <i>Science of the Total Environment</i> , 2021 , 788, 147697	10.2	0
252	Design of two-dimensional metalBrganic framework nanosheets for emerging applications. <i>FlatChem</i> , 2021 , 29, 100287	5.1	0
251	Construction of N and Fe co-doped CoO/CoxN interface for excellent OER performance. <i>Sustainable Materials and Technologies</i> , 2021 , 29, e00293	5.3	2
250	A theoretical overview on the prevention of coking in dry reforming of methane using non-precious transition metal catalysts. <i>Journal of CO2 Utilization</i> , 2021 , 53, 101728	7.6	5
249	Single-atom catalysts for high-energy rechargeable batteries. <i>Chemical Science</i> , 2021 , 12, 7656-7676	9.4	18
248	Solar-Driven Carbon Nanoreactor Coupling Gold and Platinum Nanocatalysts for Alcohol Oxidations. <i>Small</i> , 2020 , 16, e2002236	11	12
247	Functional Micro/Nanoreactors for Nanospace-Confined Migrations and Diffusions. <i>ChemNanoMat</i> , 2020 , 6, 1437-1448	3.5	4
246	Perspectives on the Active Sites and Catalyst Design for the Hydrogenation of Dimethyl Oxalate. <i>ACS Catalysis</i> , 2020 , 10, 4465-4490	13.1	20
245	Cu/ZnO Catalysts Derived from Bimetallic Metal-Organic Framework for Dimethyl Ether Synthesis from Syngas with Enhanced Selectivity and Stability. <i>Small</i> , 2020 , 16, e1906276	11	11
244	Hollow Carbon Sphere Nanoreactors Loaded with PdCu Nanoparticles: Void-Confinement Effects in Liquid-Phase Hydrogenations. <i>Angewandte Chemie</i> , 2020 , 132, 18532-18537	3.6	8
243	Hollow Carbon Sphere Nanoreactors Loaded with PdCu Nanoparticles: Void-Confinement Effects in Liquid-Phase Hydrogenations. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 18374-18379	16.4	54

(2020-2020)

242	A green route for the synthesis of nano-sized hierarchical ZSM-5 zeolite with excellent DTO catalytic performance. <i>Chemical Engineering Journal</i> , 2020 , 388, 124322	14.7	14
241	Vacancy Engineering of Iron-Doped W O Nanoreactors for Low-Barrier Electrochemical Nitrogen Reduction. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 7356-7361	16.4	126
240	Vacancy Engineering of Iron-Doped W18O49 Nanoreactors for Low-Barrier Electrochemical Nitrogen Reduction. <i>Angewandte Chemie</i> , 2020 , 132, 7426-7431	3.6	15
239	Nanoporous core@shell particles: Design, preparation, applications in bioadsorption and biocatalysis. <i>Nano Today</i> , 2020 , 31, 100834	17.9	54
238	Pillar-free TiO2/Ti3C2 composite with expanded interlayer spacing for high-capacity sodium ion batteries. <i>Journal of Power Sources</i> , 2020 , 451, 227756	8.9	37
237	Ultrathin agaric-like ZnO with Pd dopant for aniline sensor and DFT investigation. <i>Journal of Hazardous Materials</i> , 2020 , 388, 122069	12.8	28
236	Nitrogen-doped Carbon Nanospheres-Modified Graphitic Carbon Nitride with Outstanding Photocatalytic Activity. <i>Nano-Micro Letters</i> , 2020 , 12, 24	19.5	27
235	A novel green enzymatic synthetic route of 2, 3-dihydroxybenzoic acid from glucose and CO2 fixation. <i>Process Biochemistry</i> , 2020 , 94, 207-212	4.8	2
234	REktitelbild: Vacancy Engineering of Iron-Doped W18O49 Nanoreactors for Low-Barrier Electrochemical Nitrogen Reduction (Angew. Chem. 19/2020). <i>Angewandte Chemie</i> , 2020 , 132, 7696-76	9 3 .6	1
233	Construction of hollow mesoporous silica nanoreactors for enhanced photo-oxidations over Au-Pt catalysts. <i>National Science Review</i> , 2020 , 7, 1647-1655	10.8	29
232	In-situ formation of carboxylate species on TiO nanosheets for enhanced visible-light photocatalytic performance. <i>Journal of Colloid and Interface Science</i> , 2020 , 577, 512-522	9.3	5
231	Nanoengineering of yolk-shell structured silicas for click chemistry. <i>Microporous and Mesoporous Materials</i> , 2020 , 291, 109691	5.3	3
230	Three-dimensional assemblies of carbon nitride tubes as nanoreactors for enhanced photocatalytic hydrogen production. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 305-312	13	60
229	Synthesis of Colloidal Mesoporous Silica Spheres with Large Through-Holes on the Shell. <i>Langmuir</i> , 2020 , 36, 6984-6993	4	11
228	Innentitelbild: Hollow Carbon Sphere Nanoreactors Loaded with PdCu Nanoparticles: Void-Confinement Effects in Liquid-Phase Hydrogenations (Angew. Chem. 42/2020). <i>Angewandte Chemie</i> , 2020 , 132, 18434-18434	3.6	1
227	Boosting electrochemical oxygen evolution over yolk-shell structured OMoS2 nanoreactors with sulfur vacancy and decorated Pt nanoparticles. <i>Nano Energy</i> , 2020 , 78, 105284	17.1	46
226	Yolk-Shell structured NiCo@SiO2 nanoreactor for CO2 upgrading via reverse water-gas shift reaction. <i>Catalysis Today</i> , 2020 ,	5.3	6
225	High-power lithium-selenium batteries enabled by atomic cobalt electrocatalyst in hollow carbon cathode. <i>Nature Communications</i> , 2020 , 11, 5025	17.4	84

224	Z-scheme heterojunction of SnS2-decorated 3DOM-SrTiO3 for selectively photocatalytic CO2 reduction into CH4. <i>Chinese Chemical Letters</i> , 2020 , 31, 2774-2778	8.1	36
223	A universal nanoreactor strategy for scalable supported ultrafine bimetallic nanoparticles synthesis. <i>Materials Today</i> , 2020 , 40, 72-81	21.8	8
222	Micro-scale spatial location engineering of COFTIiO2 heterojunctions for visible light driven photocatalytic alcohol oxidation. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 18745-18754	13	21
221	Hierarchical Microtubes Constructed by MoS Nanosheets with Enhanced Sodium Storage Performance. <i>ACS Nano</i> , 2020 , 14, 15577-15586	16.7	37
220	Carbon capture using nanoporous adsorbents 2020 , 265-303		
219	Confined Fe-Cu Clusters as Sub-Nanometer Reactors for Efficiently Regulating the Electrochemical Nitrogen Reduction Reaction. <i>Advanced Materials</i> , 2020 , 32, e2004382	24	69
218	Dual-Functional Atomic Zinc Decorated Hollow Carbon Nanoreactors for Kinetically Accelerated Polysulfides Conversion and Dendrite Free Lithium Sulfur Batteries. <i>Advanced Energy Materials</i> , 2020 , 10, 2002271	21.8	67
217	Highly stable Ru nanoparticles incorporated in mesoporous carbon catalysts for production of Evalerolactone. <i>Catalysis Today</i> , 2020 , 351, 75-82	5.3	7
216	Metal-organic-framework-derived formation of CoN-doped carbon materials for efficient oxygen reduction reaction. <i>Journal of Energy Chemistry</i> , 2020 , 40, 137-143	12	50
215	One-pot assembling of hierarchical porous carbon/silica nanocomposites for cycloaddition reaction. <i>Microporous and Mesoporous Materials</i> , 2020 , 293, 109768	5.3	9
214	Molecular-Level Design of Pyrrhotite Electrocatalyst Decorated Hierarchical Porous Carbon Spheres as Nanoreactors for LithiumBulfur Batteries. <i>Advanced Energy Materials</i> , 2020 , 10, 2000651	21.8	61
213	Simultaneous Preparation of Polyaniline Nanofibers/Manganese Dioxide Composites at the Interface of Oil/Water for Supercapacitive Application. <i>Journal of Electronic Materials</i> , 2019 , 48, 6666-60	674	3
212	Advantages of Yolk Shell Catalysts for the DRM: A Comparison of Ni/ZnO@SiO2 vs. Ni/CeO2 and Ni/Al2O3. <i>Chemistry</i> , 2019 , 1, 3-16	2.1	11
211	Flexible and free-standing SiOx/CNT composite films for high capacity and durable lithium ion batteries. <i>Carbon</i> , 2019 , 152, 888-897	10.4	53
210	The formation of yolkEhell structured NiO nanospheres with enhanced lithium storage capacity. <i>Materials Chemistry Frontiers</i> , 2019 , 3, 1619-1625	7.8	9
209	N-doped carbon spheres impregnated with highly monodispersed ruthenium nanoparticles as a hydrogenation catalyst. <i>Chemical Engineering Journal</i> , 2019 , 374, 895-903	14.7	30
208	Cobalt single atoms anchored on N-doped ultrathin carbon nanosheets for selective transfer hydrogenation of nitroarenes. <i>Science China Materials</i> , 2019 , 62, 1306-1314	7.1	34
207	Preparation of covalently bonded polyaniline nanofibers/carbon nanotubes supercapacitor electrode materials using interfacial polymerization approach. <i>Journal of Polymer Research</i> , 2019 , 26, 1	2.7	18

206	Sequential growth of hierarchical N-doped carbon-MoS2 nanocomposites with variable nanostructures. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 6197-6204	13	16
205	Microenvironment Engineering of Ruthenium Nanoparticles Incorporated into Silica Nanoreactors for Enhanced Hydrogenations. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 14483-14488	16.4	39
204	Ca2+-doped ultrathin cobalt hydroxyl oxides derived from coordination polymers as efficient electrocatalysts for the oxidation of water. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 19415-19422	13	20
203	Microenvironment Engineering of Ruthenium Nanoparticles Incorporated into Silica Nanoreactors for Enhanced Hydrogenations. <i>Angewandte Chemie</i> , 2019 , 131, 14625-14630	3.6	7
202	Nanoengineering Carbon Spheres as Nanoreactors for Sustainable Energy Applications. <i>Advanced Materials</i> , 2019 , 31, e1903886	24	147
201	A Multifunctional Platinum Nanoreactor for Point-of-Care Metabolic Analysis. <i>Matter</i> , 2019 , 1, 1669-168	8 0 2.7	62
200	Janus particles: design, preparation, and biomedical applications. <i>Materials Today Bio</i> , 2019 , 4, 100033	9.9	95
199	Enhanced Hydrogenation Performance over Hollow Structured Co-CoO@N-C Capsules. <i>Advanced Science</i> , 2019 , 6, 1900807	13.6	58
198	Innentitelbild: Microenvironment Engineering of Ruthenium Nanoparticles Incorporated into Silica Nanoreactors for Enhanced Hydrogenations (Angew. Chem. 41/2019). <i>Angewandte Chemie</i> , 2019 , 131, 14530-14530	3.6	1
197	The Success Story of Gold-Based Catalysts for Gas- and Liquid-Phase Reactions: A Brief Perspective and Beyond. <i>Frontiers in Chemistry</i> , 2019 , 7, 691	5	3
196	Atomic Ni Species Anchored N-Doped Carbon Hollow Spheres as Nanoreactors for Efficient Electrochemical CO2 Reduction. <i>ChemCatChem</i> , 2019 , 11, 6092-6098	5.2	36
195	A well-designed sandwich-like MS/Pd@MS hollow nanosphere for Suzuki coupling reactions of aryl bromides and arylboronic acids. <i>Inorganic Chemistry Communication</i> , 2019 , 110, 107579	3.1	2
194	Mesoporous MnO2 hollow spheres for enhanced catalytic oxidation of formaldehyde. <i>Sustainable Materials and Technologies</i> , 2019 , 20, e00091	5.3	11
193	Highly Stable Dual-Phase Membrane Based on Ce0.9Gd0.1O2 I la2NiO4+ I for Oxygen Permeation under Pure CO2 Atmosphere. <i>Energy Technology</i> , 2019 , 7, 1800701	3.5	26
192	Versatile design and synthesis of mesoporous sulfonic acid catalysts. <i>Science Bulletin</i> , 2018 , 63, 252-266	10.6	13
191	Facile synthesis of Co3O4 nanosheets from MOF nanoplates for high performance anodes of lithium-ion batteries. <i>Inorganic Chemistry Frontiers</i> , 2018 , 5, 1602-1608	6.8	33
190	Nanoengineering of amino - functionalized mesoporous silica nanospheres as nanoreactors. <i>Progress in Natural Science: Materials International</i> , 2018 , 28, 242-245	3.6	11
189	Advances in Multicompartment Mesoporous Silica Micro/Nanoparticles for Theranostic Applications. <i>Annual Review of Chemical and Biomolecular Engineering</i> , 2018 , 9, 389-411	8.9	43

188	A pH-responsive TiO2-based Pickering emulsion system for in situ catalyst recycling. <i>Chinese Chemical Letters</i> , 2018 , 29, 778-782	8.1	21
187	Wheat flour-derived N-doped mesoporous carbon extrudate as superior metal-free catalysts for acetylene hydrochlorination. <i>Chemical Communications</i> , 2018 , 54, 623-626	5.8	39
186	Formation of hollow MoS2/carbon microspheres for high capacity and high rate reversible alkali-ion storage. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 8280-8288	13	56
185	Plasmonic Janus hybrids for the detection of small metabolites. <i>Journal of Materials Chemistry B</i> , 2018 , 6, 7280-7287	7.3	34
184	Rational design of Co embedded N,S-codoped carbon nanoplates as anode materials for high performance lithium-ion batteries. <i>Dalton Transactions</i> , 2018 , 47, 12385-12392	4.3	20
183	One-Pot Pyrolysis Method to Fabricate Carbon Nanotube Supported Ni Single-Atom Catalysts with Ultrahigh Loading. <i>ACS Applied Energy Materials</i> , 2018 ,	6.1	14
182	One-Pot Synthesis of Raspberry-Like Mesoporous Silica Nanospheres. <i>Journal of Nanoscience and Nanotechnology</i> , 2018 , 18, 401-406	1.3	4
181	Robust mesoporous bimetallic yolkEhell catalysts for chemical CO2 upgrading via dry reforming of methane. <i>Reaction Chemistry and Engineering</i> , 2018 , 3, 433-436	4.9	22
180	The Development of YolkBhell-Structured Pd&ZnO@Carbon Submicroreactors with High Selectivity and Stability. <i>Advanced Functional Materials</i> , 2018 , 28, 1801737	15.6	60
179	A review on photocatalysis for air treatment: From catalyst development to reactor design. <i>Chemical Engineering Journal</i> , 2017 , 310, 537-559	14.7	335
178	Hollow Carbon Spheres with Abundant Micropores for Enhanced CO Adsorption. <i>Langmuir</i> , 2017 , 33, 1248-1255	4	44
177	2D Layered non-precious metal mesoporous electrocatalysts for enhanced oxygen reduction reaction. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 4868-4878	13	45
176	Growing a hydrophilic nanoporous shell on a hydrophobic catalyst interface for aqueous reactions with high reaction efficiency and in situ catalyst recycling. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 16	162 ³ 16	1 <i>7</i> 6
175	Fabrication of coreBhell, yolkBhell and hollow Fe3O4@carbon microboxes for high-performance lithium-ion batteries. <i>Materials Chemistry Frontiers</i> , 2017 , 1, 823-830	7.8	56
174	Hollow carbon nanobubbles: monocrystalline MOF nanobubbles and their pyrolysis. <i>Chemical Science</i> , 2017 , 8, 3538-3546	9.4	264
173	Design and synthesis of porous ZnTiO3/TiO2 nanocages with heterojunctions for enhanced photocatalytic H2 production. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 11615-11622	13	47
172	From waste Coca Cola to activated carbons with impressive capabilities for CO2 adsorption and supercapacitors. <i>Carbon</i> , 2017 , 116, 490-499	10.4	152
171	Porous Co3V2O8 Nanosheets with Ultrahigh Performance as Anode Materials for Lithium Ion Batteries. <i>Advanced Materials Interfaces</i> , 2017 , 4, 1700054	4.6	35

(2017-2017)

170	High-Yield Synthesis of Janus Dendritic Mesoporous Silica@Resorcinol-Formaldehyde Nanoparticles: A Competing Growth Mechanism. <i>Langmuir</i> , 2017 , 33, 5269-5274	4	13
169	Dumbbell-Shaped Bi-component Mesoporous Janus Solid Nanoparticles for Biphasic Interface Catalysis. <i>Angewandte Chemie</i> , 2017 , 129, 8579-8583	3.6	23
168	Dumbbell-Shaped Bi-component Mesoporous Janus Solid Nanoparticles for Biphasic Interface Catalysis. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 8459-8463	16.4	152
167	Carbon nitride nanosheets as visible light photocatalytic initiators and crosslinkers for hydrogels with thermoresponsive turbidity. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 8933-8938	13	62
166	Hollow Carbon Nanopolyhedra for Enhanced Electrocatalysis via Confined Hierarchical Porosity. Small, 2017 , 13, 1700238	11	54
165	Advanced yolk-shell nanoparticles as nanoreactors for energy conversion. <i>Chinese Journal of Catalysis</i> , 2017 , 38, 970-990	11.3	36
164	Synthesis of micro-mesoporous materials ZSM-5/FDU-12 and the performance of dibenzothiophene hydrodesulfurization. <i>RSC Advances</i> , 2017 , 7, 28038-28047	3.7	22
163	Spontaneous Weaving of Graphitic Carbon Networks Synthesized by Pyrolysis of ZIF-67 Crystals. <i>Angewandte Chemie</i> , 2017 , 129, 8555-8560	3.6	31
162	Spontaneous Weaving of Graphitic Carbon Networks Synthesized by Pyrolysis of ZIF-67 Crystals. Angewandte Chemie - International Edition, 2017 , 56, 8435-8440	16.4	275
161	Coordination Polymer Nanoglue: Robust Adhesion Based on Collective Lamellar Stacking of Nanoplates. <i>ACS Nano</i> , 2017 , 11, 3662-3670	16.7	23
160	Hierarchical Porous YolkBhell Carbon Nanosphere for High-Performance LithiumBulfur Batteries. <i>Particle and Particle Systems Characterization</i> , 2017 , 34, 1600281	3.1	31
159	Highly compact and robust hollow fiber solid oxide cells for flexible power generation and gas production. <i>Applied Energy</i> , 2017 , 205, 741-748	10.7	8
158	Ion-Exchange-Induced Selective Etching for the Synthesis of Amino-Functionalized Hollow Mesoporous Silica for Elevated-High-Temperature Fuel Cells. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 31922-31930	9.5	19
157	Nitrogen-doped hollow carbon spheres derived from amination reaction of fullerene with alkyl diamines as a carbon catalyst for hydrogenation of aromatic nitro compounds. <i>Carbon</i> , 2017 , 125, 139-1	45 ^{0.4}	24
156	Role of graphene in enhancing the mechanical properties of TiO/graphene heterostructures. <i>Nanoscale</i> , 2017 , 9, 11678-11684	7.7	17
155	YolkBhell-Structured Cu/Fe@Fe2O3 Nanoparticles Loaded Graphitic Porous Carbon for the Oxygen Reduction Reaction. <i>Particle and Particle Systems Characterization</i> , 2017 , 34, 1700158	3.1	10
154	MOF derived mesoporous K-ZrO2 with enhanced basic catalytic performance for Knoevenagel condensations. <i>RSC Advances</i> , 2017 , 7, 55920-55926	3.7	9
153	Size dependence of uniformed carbon spheres in promoting graphitic carbon nitride toward enhanced photocatalysis. <i>Applied Catalysis B: Environmental</i> , 2017 , 204, 358-364	21.8	52

152	Nitrogen-doped hollow carbon spheres with large mesoporous shells engineered from diblock copolymer micelles. <i>Chemical Communications</i> , 2016 , 52, 505-8	5.8	76
151	MOF-Derived Tungstated Zirconia as Strong Solid Acids toward High Catalytic Performance for Acetalization. <i>ACS Applied Materials & Samp; Interfaces</i> , 2016 , 8, 23755-62	9.5	33
150	Synthesis and applications of porous non-silica metal oxide submicrospheres. <i>Chemical Society Reviews</i> , 2016 , 45, 6013-6047	58.5	118
149	Bi-layer photoanode films of hierarchical carbon-doped brookite-rutile TiO 2 composite and anatase TiO 2 beads for efficient dye-sensitized solar cells. <i>Electrochimica Acta</i> , 2016 , 216, 429-437	6.7	12
148	Synthesis of Monocrystalline Nanoframes of Prussian Blue Analogues by Controlled Preferential Etching. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 8228-34	16.4	138
147	Synthesis of Monocrystalline Nanoframes of Prussian Blue Analogues by Controlled Preferential Etching. <i>Angewandte Chemie</i> , 2016 , 128, 8368-8374	3.6	25
146	Template-free synthesis of carbon doped TiO 2 mesoporous microplates for enhanced visible light photodegradation. <i>Science Bulletin</i> , 2016 , 61, 1543-1550	10.6	21
145	Formation of continuous and highly permeable ZIF-8 membranes on porous alumina and zinc oxide hollow fibers. <i>Chemical Communications</i> , 2016 , 52, 13448-13451	5.8	36
144	Microfluidic chip-based one-step fabrication of an artificial photosystem I for photocatalytic cofactor regeneration. <i>RSC Advances</i> , 2016 , 6, 101974-101980	3.7	19
143	Triconstituent co-assembly synthesis of N,S-doped carbonBilica nanospheres with smooth and rough surfaces. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 3721-3727	13	33
142	Enhanced Oxygen Permeation Behavior of Ba0.5Sr0.5Co0.8Fe0.2O3lMembranes in a CO2-Containing Atmosphere with a Sm0.2Ce0.8O1.9 Functional Shell. <i>Energy & Description of Energy & Description of Energy</i>	2 9 -183	4 ¹²
141	Yolk-Shell-Structured Aluminum Phenylphosphonate Microspheres with Anionic Core and Cationic Shell. <i>Advanced Science</i> , 2016 , 3, 1500363	13.6	19
140	Efficient drug delivery using SiO2-layered double hydroxide nanocomposites. <i>Journal of Colloid and Interface Science</i> , 2016 , 470, 47-55	9.3	52
139	A synthetic strategy for carbon nanospheres impregnated with highly monodispersed metal nanoparticles. <i>NPG Asia Materials</i> , 2016 , 8, e240-e240	10.3	60
138	Graphitic carbon nitride "reloaded": emerging applications beyond (photo)catalysis. <i>Chemical Society Reviews</i> , 2016 , 45, 2308-26	58.5	595
137	Exceptional durability enhancement of PA/PBI based polymer electrolyte membrane fuel cells for high temperature operation at 200 °C. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 4019-4024	13	68
136	Reinforced perovskite hollow fiber membranes with stainless steel as the reactive sintering aid for oxygen separation. <i>Journal of Membrane Science</i> , 2016 , 502, 151-157	9.6	10
135	Raspberry-like hollow carbon nanospheres with enhanced matrix-free peptide detection profiles. <i>Chemical Communications</i> , 2016 , 52, 1709-12	5.8	32

(2015-2016)

134	A General Method for Constructing Two-Dimensional Layered Mesoporous Mono- and Binary-Transition-Metal Nitride/Graphene as an Ultra-Efficient Support to Enhance Its Catalytic Activity and Durability for Electrocatalytic Application. ACS Applied Materials & Camp; Interfaces, 2016	9.5	20
133	, 8, 18770-87 Enhanced CO2 Resistance for Robust Oxygen Separation Through Tantalum-doped Perovskite Membranes. <i>ChemSusChem</i> , 2016 , 9, 505-12	8.3	19
132	Platinum single-atom and cluster catalysis of the hydrogen evolution reaction. <i>Nature Communications</i> , 2016 , 7, 13638	17.4	1085
131	Revisiting the StBer method: Design of nitrogen-doped porous carbon spheres from molecular precursors of different chemical structures. <i>Journal of Colloid and Interface Science</i> , 2016 , 476, 55-61	9.3	28
130	Design, synthesis and catalytic performance of vanadium-incorporated mesoporous silica KIT-6 catalysts for the oxidative dehydrogenation of propane to propylene. <i>Catalysis Science and Technology</i> , 2016 , 6, 5927-5941	5.5	42
129	Biomimetic polymeric semiconductor based hybrid nanosystems for artificial photosynthesis towards solar fuels generation via CO2 reduction. <i>Nano Energy</i> , 2016 , 25, 128-135	17.1	83
128	Amino-functionalized mesoporous silica based polyethersulfonepolyvinylpyrrolidone composite membranes for elevated temperature proton exchange membrane fuel cells. <i>RSC Advances</i> , 2016 , 6, 86575-86585	3.7	22
127	Frontispiece: Synthesis of Monocrystalline Nanoframes of Prussian Blue Analogues by Controlled Preferential Etching. <i>Angewandte Chemie - International Edition</i> , 2016 , 55,	16.4	1
126	Titanium Dioxide/Lithium Phosphate Nanocomposite Derived from Atomic Layer Deposition as a High-Performance Anode for Lithium Ion Batteries. <i>Advanced Materials Interfaces</i> , 2016 , 3, 1600369	4.6	24
125	YolkBhell-Structured Nanoparticles: Synthesis, Surface Functionalization, and Their Applications in Nanomedicine 2016 , 61-106		
124	Thermal conversion of core-shell metal-organic frameworks: a new method for selectively functionalized nanoporous hybrid carbon. <i>Journal of the American Chemical Society</i> , 2015 , 137, 1572-80	16.4	1085
123	Ultrasmall single micelle@resin core-shell nanocarriers as efficient cargo loading vehicles for in vivo biomedical applications. <i>Journal of Materials Chemistry B</i> , 2015 , 3, 4671-4678	7-3	12
122	Molecular-based design and emerging applications of nanoporous carbon spheres. <i>Nature Materials</i> , 2015 , 14, 763-74	27	712
121	Carbon-Nanotubes-Supported Pd Nanoparticles for Alcohol Oxidations in Fuel Cells: Effect of Number of Nanotube Walls on Activity. <i>ChemSusChem</i> , 2015 , 8, 2956-66	8.3	35
120	Selective functionalization of hollow nanospheres with Acid and base groups for cascade reactions. <i>Chemistry - A European Journal</i> , 2015 , 21, 7403-7	4.8	52
119	Atomically precise growth of sodium titanates as anode materials for high-rate and ultralong cycle-life sodium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 24281-24288	13	29
118	Hierarchical mesoporous yolk-shell structured carbonaceous nanospheres for high performance electrochemical capacitive energy storage. <i>Chemical Communications</i> , 2015 , 51, 2518-21	5.8	136
117	Ce0.9Gd0.1O2Imembranes coated with porous Ba0.5Sr0.5Co0.8Fe0.2O3Ifor oxygen separation. <i>RSC Advances</i> , 2015 , 5, 5379-5386	3.7	16

116	Extremely stable platinum nanoparticles encapsulated in a zirconia nanocage by area-selective atomic layer deposition for the oxygen reduction reaction. <i>Advanced Materials</i> , 2015 , 27, 277-81	24	206
115	Synthesis of nitrogen-doped mesoporous carbon spheres with extra-large pores through assembly of diblock copolymer micelles. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 588-93	16.4	185
114	Heteroatom-Doped Nanoporous Carbon for Electrocatalysis 2015 , 43-74		
113	Synthesis of Nitrogen-Doped Mesoporous Carbon Spheres with Extra-Large Pores through Assembly of Diblock Copolymer Micelles. <i>Angewandte Chemie</i> , 2015 , 127, 598-603	3.6	94
112	Synthesis of CaCO3@C yolkBhell particles for CO2 adsorption. <i>RSC Advances</i> , 2015 , 5, 24872-24876	3.7	15
111	Amine-functionalized SiO2 nanodot-coated layered double hydroxide nanocomposites for enhanced gene delivery. <i>Nano Research</i> , 2015 , 8, 682-694	10	70
110	Azide-functionalized hollow silica nanospheres for removal of antibiotics. <i>Journal of Colloid and Interface Science</i> , 2015 , 444, 38-41	9.3	26
109	Fe3O4 encapsulated mesoporous silica nanospheres with tunable size and large void pore. <i>Frontiers of Chemical Science and Engineering</i> , 2014 , 8, 114-122	4.5	5
108	Clickable periodic mesoporous organosilicas: synthesis, click reactions, and adsorption of antibiotics. <i>Chemistry - A European Journal</i> , 2014 , 20, 1957-63	4.8	45
107	N-doped mesoporous carbon spheres as the oxygen reduction reaction catalysts. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 18139-18146	13	168
106	La0.6Sr0.4Co0.2Fe0.8O3[hollow fibre membrane performance improvement by coating of Ba0.5Sr0.5Co0.9Nb0.1O3[porous layer. <i>RSC Advances</i> , 2014 , 4, 19999-20004	3.7	19
105	Superior stable sulfur cathodes of Li-S batteries enabled by molecular layer deposition. <i>Chemical Communications</i> , 2014 , 50, 9757-60	5.8	51
104	Fabrication of corellhell structured mesoporous silica nanospheres with dually oriented mesochannels through pore engineering. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 8118-8125	13	28
103	Facile synthesis of carbon-doped mesoporous anatase TiOIFor the enhanced visible-light driven photocatalysis. <i>Chemical Communications</i> , 2014 , 50, 13971-4	5.8	128
102	Recent progress on the tailored synthesis of various mesoporous fibers toward practical applications. <i>New Journal of Chemistry</i> , 2014 , 38, 3330	3.6	5
101	Tailored design of functional nanoporous carbon materials toward fuel cell applications. <i>Nano Today</i> , 2014 , 9, 305-323	17.9	230
100	Synthesis of micro and nano-sized calcium carbonate particles and their applications. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 14270-14288	13	205
99	Mesoporous carbon with large pores as anode for Na-ion batteries. <i>Science Bulletin</i> , 2014 , 59, 2186-219	90	34

(2012-2014)

98	Clickable SBA-15 to screen functional groups for adsorption of antibiotics. <i>Chemistry - an Asian Journal</i> , 2014 , 9, 908-14	4.5	12
97	Rational design of atomic-layer-deposited LiFePO4 as a high-performance cathode for lithium-ion batteries. <i>Advanced Materials</i> , 2014 , 26, 6472-7	24	138
96	Palladium nanoparticles bonded to two-dimensional iron oxide graphene nanosheets: a synergistic and highly reusable catalyst for the Tsuji-Trost reaction in water and air. <i>Chemistry - A European Journal</i> , 2014 , 20, 11549-55	4.8	58
95	Organic-inorganic hybrid hierarchical aluminum phenylphosphonate microspheres. <i>Journal of Colloid and Interface Science</i> , 2014 , 427, 35-41	9.3	14
94	Facile fabrication of core-shell-structured Ag@carbon and mesoporous yolk-shell-structured Ag@carbon@silica by an extended StBer method. <i>Chemistry - A European Journal</i> , 2013 , 19, 6942-5	4.8	115
93	Atomic layer deposited Li4Ti5O12 on nitrogen-doped carbon nanotubes. <i>RSC Advances</i> , 2013 , 3, 7285	3.7	47
92	Enhancing enzymatic stability of bioactive papers by implanting enzyme-immobilized mesoporous silica nanorods into paper. <i>Journal of Materials Chemistry B</i> , 2013 , 1, 4719-4722	7.3	12
91	Encapsulation of lipase in mesoporous silica yolk@hell spheres with enhanced enzyme stability. <i>RSC Advances</i> , 2013 , 3, 22008	3.7	52
90	Sol-gel coating of inorganic nanostructures with resorcinol-formaldehyde resin. <i>Chemical Communications</i> , 2013 , 49, 5135-7	5.8	127
89	TiO2/CdS composite hollow spheres with controlled synthesis of platinum on the internal wall for the efficient hydrogen evolution. <i>International Journal of Hydrogen Energy</i> , 2013 , 38, 9065-9073	6.7	29
88	Controlled synthesis of Zirconium Oxide on graphene nanosheets by atomic layer deposition and its growth mechanism. <i>Carbon</i> , 2013 , 52, 74-82	10.4	42
87	A facile soft-template synthesis of mesoporous polymeric and carbonaceous nanospheres. <i>Nature Communications</i> , 2013 , 4,	17.4	475
86	Facet-dependent catalytic activity of platinum nanocrystals for triiodide reduction in dye-sensitized solar cells. <i>Scientific Reports</i> , 2013 , 3, 1836	4.9	133
85	Mesoporous organosilica hollow microspheres with hierarchical structures on the shell. <i>Journal of Nanoscience and Nanotechnology</i> , 2013 , 13, 3046-53	1.3	1
84	Hollow micro/nanomaterials as nanoreactors for photocatalysis. APL Materials, 2013, 1, 041101	5.7	20
83	Laser engineered graphene paper for mass spectrometry imaging. Scientific Reports, 2013, 3, 1415	4.9	39
82	Mesoporous metallic cells: design of uniformly sized hollow mesoporous Pt-Ru particles with tunable shell thicknesses. <i>Small</i> , 2013 , 9, 1047-51	11	146
81	Magnetic silica spheres with large nanopores for nucleic acid adsorption and cellular uptake. <i>Biomaterials</i> , 2012 , 33, 970-8	15.6	71

80	Hydrolysis controlled synthesis of amine-functionalized hollow ethaneBilica nanospheres as adsorbents for CO2 capture. <i>Microporous and Mesoporous Materials</i> , 2012 , 151, 474-480	5.3	55
79	YolkBhell Hybrid Materials with a Periodic Mesoporous Organosilica Shell: Ideal Nanoreactors for Selective Alcohol Oxidation. <i>Advanced Functional Materials</i> , 2012 , 22, 591-599	15.6	330
78	Graphitic carbon nitride materials: controllable synthesis and applications in fuel cells and photocatalysis. <i>Energy and Environmental Science</i> , 2012 , 5, 6717	35.4	1385
77	Enzyme-Responsive Controlled Release of Covalently Bound Prodrug from Functional Mesoporous Silica Nanospheres. <i>Angewandte Chemie</i> , 2012 , 124, 12654-12657	3.6	28
76	Enzyme-responsive controlled release of covalently bound prodrug from functional mesoporous silica nanospheres. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 12486-9	16.4	146
75	The synthesis and catalytic performances of three-dimensionally ordered macroporous perovskite-type LaMn1\(\text{MFexO3} \) complex oxide catalysts with different pore diameters for diesel soot combustion. Catalysis Today, 2012, 191, 146-153	5.3	47
74	Crystallinity-Controlled Synthesis of Zirconium Oxide Thin Films on Nitrogen-Doped Carbon Nanotubes by Atomic Layer Deposition. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 14656-14664	3.8	32
73	A pH-responsive drug delivery system based on chitosan coated mesoporous silica nanoparticles. Journal of Materials Chemistry, 2012 , 22, 11173		227
72	A YolkBhell Nanoreactor with a Basic Core and an Acidic Shell for Cascade Reactions. <i>Angewandte Chemie</i> , 2012 , 124, 9298-9302	3.6	62
71	Confined LiBH4: Enabling fast hydrogen release at ~100IIC. <i>International Journal of Hydrogen Energy</i> , 2012 , 37, 18920-18926	6.7	38
70	Poly-L-lysine functionalized large pore cubic mesostructured silica nanoparticles as biocompatible carriers for gene delivery. <i>ACS Nano</i> , 2012 , 6, 2104-17	16.7	227
69	Amino acid assisted synthesis of mesoporous TiO2 nanocrystals for high performance dye-sensitized solar cells. <i>Journal of Materials Chemistry</i> , 2012 , 22, 10438		22
68	Adsorption and release of biocides with mesoporous silica nanoparticles. <i>Nanoscale</i> , 2012 , 4, 970-5	7.7	125
67	Facile Oxygen Reduction on a Three-Dimensionally Ordered Macroporous Graphitic C3N4/Carbon Composite Electrocatalyst. <i>Angewandte Chemie</i> , 2012 , 124, 3958-3962	3.6	146
66	Facile oxygen reduction on a three-dimensionally ordered macroporous graphitic C3N4/carbon composite electrocatalyst. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 3892-6	16.4	549
65	A yolk-shell nanoreactor with a basic core and an acidic shell for cascade reactions. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 9164-8	16.4	246
64	Controllable synthesis of graphene-based titanium dioxide nanocomposites by atomic layer deposition. <i>Nanotechnology</i> , 2011 , 22, 165602	3.4	82
63	Highly ordered mesoporous NiO anode material for lithium ion batteries with an excellent electrochemical performance. <i>Journal of Materials Chemistry</i> , 2011 , 21, 3046		423

(2010-2011)

62	Yolk/shell nanoparticles: new platforms for nanoreactors, drug delivery and lithium-ion batteries. <i>Chemical Communications</i> , 2011 , 47, 12578-91	5.8	727
61	Ellipsoidal hollow nanostructures assembled from anatase TiO2 nanosheets as a magnetically separable photocatalyst. <i>Chemical Communications</i> , 2011 , 47, 2631-3	5.8	189
60	Formation of large 2D nanosheets via PVP-assisted assembly of anatase TiO2 nanomosaics. <i>Chemical Communications</i> , 2011 , 47, 10443-5	5.8	68
59	Synthetic Chemistry of Nanomaterials 2011 , 479-506		4
58	Mesoporous silica nanoparticles for bioadsorption, enzyme immobilisation, and delivery carriers. <i>Nanoscale</i> , 2011 , 3, 2801-18	7.7	449
57	Nanoporous graphitic-C3N4@carbon metal-free electrocatalysts for highly efficient oxygen reduction. <i>Journal of the American Chemical Society</i> , 2011 , 133, 20116-9	16.4	869
56	Magnetic nanocomposites with mesoporous structures: synthesis and applications. Small, 2011, 7, 425-	43 1	612
55	Extension of The StBer Method to the Preparation of Monodisperse ResorcinolEormaldehyde Resin Polymer and Carbon Spheres. <i>Angewandte Chemie</i> , 2011 , 123, 6069-6073	3.6	91
54	Extension of the StBer method to the preparation of monodisperse resorcinol-formaldehyde resin polymer and carbon spheres. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 5947-51	16.4	623
53	Hierarchical structures of single-crystalline anatase TiO2 nanosheets dominated by {001} facets. <i>Chemistry - A European Journal</i> , 2011 , 17, 1423-7	4.8	135
52	Organosilane-Assisted Transformation from CoreBhell to YolkBhell Nanocomposites. <i>Chemistry of Materials</i> , 2011 , 23, 3676-3684	9.6	129
51	Organosilica nanotubes: large-scale synthesis and encapsulation of metal nanoparticles. <i>Chemical Communications</i> , 2011 , 47, 8073-5	5.8	54
50	Synthesis of nanorattles with layered double hydroxide core and mesoporous silica shell as delivery vehicles. <i>Journal of Materials Chemistry</i> , 2011 , 21, 10641		53
49	Nitrogen doping effects on the structure of graphene. <i>Applied Surface Science</i> , 2011 , 257, 9193-9198	6.7	400
48	Tunable Assembly of Organosilica Hollow Nanospheres. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 953-	-968	90
47	A facile vesicle template route to multi-shelled mesoporous silica hollow nanospheres. <i>Journal of Materials Chemistry</i> , 2010 , 20, 4595		199
46	Functionalized Mesoporous Silica with Very Large Pores for Cellulase Immobilization. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 8353-8362	3.8	123
45	Functionalized periodic mesoporous organosilicas: Hierarchical and chiral materials. <i>Science China Chemistry</i> , 2010 , 53, 351-356	7.9	4

44	Synthesis and Characterization of Colloidal CoreBhell Semiconductor Nanowires. <i>European Journal of Inorganic Chemistry</i> , 2010 , 2010, 4325-4331	2.3	34
43	Mesoporous LiFePO4/C nanocomposite cathode materials for high power lithium ion batteries with superior performance. <i>Advanced Materials</i> , 2010 , 22, 4944-8	24	352
42	Chirally functionalized hollow nanospheres containing L-prolinamide: synthesis and asymmetric catalysis. <i>Chemistry - A European Journal</i> , 2010 , 16, 7852-8	4.8	36
41	Monodisperse YolkBhell Nanoparticles with a Hierarchical Porous Structure for Delivery Vehicles and Nanoreactors. <i>Angewandte Chemie</i> , 2010 , 122, 5101-5105	3.6	146
40	Monodisperse yolk-shell nanoparticles with a hierarchical porous structure for delivery vehicles and nanoreactors. <i>Angewandte Chemie - International Edition</i> , 2010 , 49, 4981-5	16.4	510
39	Evolution from hollow nanospheres to highly ordered FDU-12 induced by inorganic salts under weak acidic conditions. <i>Microporous and Mesoporous Materials</i> , 2010 , 127, 119-125	5.3	44
38	Synthesis of Hierarchical Copper-Containing Silicas under Near Neutral Conditions and Their Catalytic Properties in Phenol Hydroxylation. <i>Chinese Journal of Catalysis</i> , 2010 , 31, 386-393	11.3	6
37	Catalytic applications of sulfonic acid functionalized mesoporous organosilicas with different fraction of organic groups in the pore wall. <i>Journal of Porous Materials</i> , 2009 , 16, 273-281	2.4	13
36	Inorganic salt aided synthesis of monolithic silica with meso/macro hierarchical structure. <i>Microporous and Mesoporous Materials</i> , 2009 , 123, 63-70	5.3	11
35	An efficient solid acid catalyst: Poly-p-styrenesulfonic acid supported on SBA-15 via surface-initiated ATRP. <i>Microporous and Mesoporous Materials</i> , 2009 , 123, 228-233	5.3	53
34	l-Prolinamide functionalized mesoporous silicas: Synthesis and catalytic performance in direct aldol reaction. <i>Journal of Molecular Catalysis A</i> , 2009 , 313, 79-87		27
33	Chiral mesoporous organosilicas with R-(+)-Binol integrated in the framework. <i>Microporous and Mesoporous Materials</i> , 2009 , 117, 91-97	5.3	28
32	Mesoporous titanosilicates with high loading of titanium synthesized in mild acidic buffer solution. Journal of Colloid and Interface Science, 2009 , 335, 203-9	9.3	11
31	Functionalized periodic mesoporous organosilicas for catalysis. <i>Journal of Materials Chemistry</i> , 2009 , 19, 1945		248
30	Screening of metal-organic frameworks for carbon dioxide capture from flue gas using a combined experimental and modeling approach. <i>Journal of the American Chemical Society</i> , 2009 , 131, 18198-9	16.4	737
29	The nanocomposites of SO3H-hollow-nanosphere and chiral amine for asymmetric aldol reaction. Journal of Materials Chemistry, 2009 , 19, 8580		58
28	Progress in the Periodic Mesoporous Organosilicas. <i>Wuji Cailiao Xuebao/Journal of Inorganic Materials</i> , 2009 , 24, 641-649	1	7
27	OrganicIhorganic Hybrid Hollow Nanospheres with Microwindows on the Shell. <i>Chemistry of Materials</i> , 2008 , 20,	9.6	38

(2005-2008)

26	Super-microporous organosilicas synthesized from well-defined nanobuilding units. <i>Journal of Materials Chemistry</i> , 2008 , 18, 450-457		34
25	From Hollow Nanosphere to Hollow Microsphere: Mild Buffer Provides Easy Access to Tunable Silica Structure. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 16445-16451	3.8	41
24	Mesoporous ferrosilicates with high content of isolated iron species synthesized in mild buffer solution and their catalytic application. <i>Microporous and Mesoporous Materials</i> , 2008 , 113, 231-239	5.3	55
23	Direct synthesis of hierarchical monolithic silica for high performance liquid chromatography. <i>Journal of Chromatography A</i> , 2008 , 1190, 232-40	4.5	31
22	Direct synthesis of highly ordered amine-functionalized mesoporous ethane-silicas. <i>Microporous and Mesoporous Materials</i> , 2008 , 109, 172-183	5.3	83
21	Mesoporous organosilicas containing disulfide moiety: Synthesis and generation of sulfonic acid functionality through chemical transformation in the pore wall. <i>Microporous and Mesoporous Materials</i> , 2008 , 113, 333-342	5.3	31
20	Structural control of mesoporous silicas with large nanopores in a mild buffer solution. <i>Microporous and Mesoporous Materials</i> , 2008 , 116, 330-338	5.3	37
19	Tartardiamide-functionalized chiral organosilicas with highly ordered mesoporous structure. <i>Chemistry - an Asian Journal</i> , 2008 , 3, 1842-9	4.5	25
18	Periodic Mesoporous Organosilicas with 1,4-Diethylenebenzene in the Mesoporous Wall: Synthesis, Characterization, and Bioadsorption Properties. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 10948-10954	3.8	61
17	Pore-size tunable mesoporous zirconium organophosphonates with chiral L-proline for enzyme adsorption. <i>Inorganic Chemistry</i> , 2007 , 46, 7944-52	5.1	41
16	Morphological and structural evolution of mesoporous silicas in a mild buffer solution and lysozyme adsorption. <i>Langmuir</i> , 2007 , 23, 7255-62	4	85
15	Thioether-bridged Mesoporous Organosilicas: Mesophase Transformations Induced by the Bridged Organosilane Precursor. <i>Advanced Functional Materials</i> , 2007 , 17, 569-576	15.6	72
14	Synthesis of SBA-15 type mesoporous organosilicas with diethylenebenzene in the framework and post-synthetic framework modification. <i>Microporous and Mesoporous Materials</i> , 2007 , 98, 220-226	5.3	42
13	Pore size control of mesoporous silicas from mixtures of sodium silicate and TEOS. <i>Microporous and Mesoporous Materials</i> , 2007 , 106, 62-67	5.3	62
12	Synthesis and catalytic properties of mesoporous ethane-silicas containing phenyl-sulfonic acid group. <i>Journal of Molecular Catalysis A</i> , 2006 , 256, 122-129		17
11	Asymmetric Diels-Alder Reactions on Supported Bis(oxazoline) Catalysts. <i>Chinese Journal of Catalysis</i> , 2006 , 27, 946-949	11.3	5
10	Synthesis and Characterization of Phosphonic Acid Functionalized Organosilicas with Bimodal Nanostructure. <i>Chemistry of Materials</i> , 2005 , 17, 3019-3024	9.6	35
9	Acid catalyzed synthesis of ordered bifunctionalized mesoporous organosilicas with large pore. <i>Microporous and Mesoporous Materials</i> , 2005 , 77, 257-264	5.3	65

8	Structural relation properties of hydrothermally stable functionalized mesoporous organosilicas and catalysis. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 12250-6	3.4	89
7	Hydrothermally Stable Thioether-Bridged Mesoporous Materials with Void Defects in the Pore Walls. <i>Advanced Functional Materials</i> , 2005 , 15, 1297-1302	15.6	99
6	Synthesis, characterization, and catalytic activity of sulfonic acid-functionalized periodic mesoporous organosilicas. <i>Journal of Catalysis</i> , 2004 , 228, 265-272	7.3	202
5	Hydrothermal Stability and Catalytic Activity of Aluminum-Containing Mesoporous Ethane B ilicas. Journal of Physical Chemistry B, 2004 , 108, 7934-7937	3.4	56
4	Mesoporous Co DC nanosheets for electrochemical production of hydrogen peroxide in acidic medium. <i>Journal of Materials Chemistry A</i> ,	13	4
3	Regulating the Electronic Configuration of Supported Iron Nanoparticles for Electrochemical Catalytic Nitrogen Fixation. <i>Advanced Functional Materials</i> ,2111733	15.6	1
2	Design of mesoporous ZnCoSiOx hollow nanoreactors with specific spatial distribution of metal species for selective CO2 hydrogenation. <i>Nano Research</i> ,1	10	O
1	Modulation of Moffett Sites Over Mesoscale Diffusion-Enhanced Hollow Sub-Micro Reactors Toward Boosted Electrochemical Water Oxidation. <i>Advanced Functional Materials</i> ,2202141	15.6	3