List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4843835/publications.pdf Version: 2024-02-01

ΗλΙ-ΖΗΠ ΣΠΝ

#	Article	IF	CITATIONS
1	A Poreâ€Forming Strategy Toward Porous Carbonâ€Based Substrates for High Performance Flexible Lithium Metal Full Batteries. Energy and Environmental Materials, 2023, 6, .	7.3	8
2	Regulating Li nucleation/growth via implanting lithiophilic seeds onto flexible scaffolds enables highly stable Li metal anode. Journal of Colloid and Interface Science, 2022, 609, 606-616.	5.0	12
3	In-situ formation of nanosized 1T-phase MoS2 in B-doped carbon nitride for high efficient visible-light-driven H2 production. Journal of Colloid and Interface Science, 2022, 614, 92-101.	5.0	19
4	Boron-doped Sb/SbO ₂ @rGO composites with tunable components and enlarged lattice spacing for high-rate sodium-ion batteries. Journal Physics D: Applied Physics, 2021, 54, 315505.	1.3	4
5	Sustainable and Robust Graphene Cellulose Paper Decorated with Lithiophilic Au Nanoparticles to Enable Dendriteâ€free and Highâ€Power Lithium Metal Anode. Chemistry - A European Journal, 2021, 27, 8168-8177.	1.7	7
6	Robust Electrodes for Flexible Energy Storage Devices Based on Bimetallic Encapsulated Core–Multishell Structures. Advanced Science, 2021, 8, e2100911.	5.6	8
7	<i>In Situ</i> Growth of 3D Lamellar Mn(OH) ₂ on CuO-Coated Carbon Cloth for Flexible Asymmetric Supercapacitors with a High Working Voltage of 2.4 V. ACS Sustainable Chemistry and Engineering, 2021, 9, 13385-13394.	3.2	10
8	Pseudocapacitive sodium storage in a new brand foveolate TiO ₂ @MoSe ₂ nanocomposite for high-performance Na-ion hybrid capacitors. Journal of Materials Chemistry A, 2021, 9, 24419-24425.	5.2	7
9	N-doped Porous Host with Lithiophilic Co Nanoparticles Implanted into 3D Carbon Nanotubes for Dendrite-Free Lithium Metal Anodes. ACS Applied Energy Materials, 2021, 4, 12871-12881.	2.5	14
10	Micro/Nanoengineered αâ€Fe 2 O 3 Nanoaggregate Conformably Enclosed by Ultrathin Nâ€Doped Carbon Shell for Ultrastable Lithium Storage and Insight into Phase Evolution Mechanism. Chemistry - A European Journal, 2020, 26, 853-862.	1.7	12
11	Manipulating charge carrier transporting of disubstituted phenylbenzoimidazole-based host materials for efficient full-color PhOLEDs. Organic Electronics, 2020, 77, 105513.	1.4	3
12	Carbon Dots–Implanted Graphitic Carbon Nitride Nanosheets for Photocatalysis: Simultaneously Manipulating Carrier Transport in Inter―and Intralayers. Solar Rrl, 2020, 4, 1900517.	3.1	35
13	<i>In situ</i> chemically encapsulated and controlled SnS ₂ nanocrystal composites for durable lithium/sodium-ion batteries. Dalton Transactions, 2020, 49, 15874-15882.	1.6	6
14	High-Performance and Stable Warm White OLEDs Based on Orange Iridium(III) Phosphors Modified with Simple Alkyl Groups. Organometallics, 2020, 39, 3384-3393.	1.1	8
15	Target encapsulating NiMoO4 nanocrystals into 1D carbon nanofibers as free-standing anode material for lithium-ion batteries with enhanced cycle performance. Journal of Alloys and Compounds, 2020, 830, 154648.	2.8	19
16	Anchoring Black Phosphorus Nanoparticles onto ZnS Porous Nanosheets: Efficient Photocatalyst Design and Charge Carrier Dynamics. ACS Applied Materials & Interfaces, 2020, 12, 8157-8167.	4.0	53
17	Manipulating phosphorescence efficiencies of orange iridium(III) complexes through ancillary ligand control. Dyes and Pigments, 2019, 160, 119-127.	2.0	9
18	Highly Efficient Aqueousâ€Processed Hybrid Solar Cells: Control Depletion Region and Improve Carrier Extraction. Advanced Energy Materials, 2019, 9, 1803849.	10.2	6

#	Article	IF	CITATIONS
19	Micron-scaled MoS2/N-C particles with embedded nano-MoS2: A high-rate anode material for enhanced lithium storage. Applied Surface Science, 2019, 486, 519-526.	3.1	8
20	Carbon/Binderâ€Free NiO@NiO/NF with In Situ Formed Interlayer for Highâ€Arealâ€Capacity Lithium Storage. Advanced Energy Materials, 2019, 9, 1803690.	10.2	44
21	Tailoring Coral-Like Fe ₇ Se ₈ @C for Superior Low-Temperature Li/Na-Ion Half/Full Batteries: Synthesis, Structure, and DFT Studies. ACS Applied Materials & Interfaces, 2019, 11, 47886-47893.	4.0	35
22	Hydroxyl decorated g-C3N4 nanoparticles with narrowed bandgap for high efficient photocatalyst design. Applied Catalysis B: Environmental, 2019, 244, 262-271.	10.8	109
23	Egg yolk-derived carbon: Achieving excellent fluorescent carbon dots and high performance lithium-ion batteries. Journal of Alloys and Compounds, 2018, 746, 567-575.	2.8	42
24	Construction of electrical "highway―to significantly enhance the redox kinetics of normal hierarchical structured materials of MnO. Journal of Materials Chemistry A, 2018, 6, 1663-1670.	5.2	15
25	Co-catalyst-free ZnS-SnS2 porous nanosheets for clean and recyclable photocatalytic H2 generation. Journal of Alloys and Compounds, 2018, 753, 60-67.	2.8	36
26	Highâ€Performance and Lowâ€Temperature Lithium–Sulfur Batteries: Synergism of Thermodynamic and Kinetic Regulation. Advanced Energy Materials, 2018, 8, 1703638.	10.2	124
27	Target construction of ultrathin graphitic carbon encapsulated FeS hierarchical microspheres featuring superior low-temperature lithium/sodium storage properties. Journal of Materials Chemistry A, 2018, 6, 7997-8005.	5.2	62
28	Aqueousâ€Processed Polymer/Nanocrystal Hybrid Solar Cells with Doubleâ€ 6 ide Bulk Heterojunction. Advanced Energy Materials, 2018, 8, 1701966.	10.2	17
29	A simple strategy to achieve remarkable mechanochromism of cationic Ir(<scp>iii</scp>) phosphors through subtle ligand modification. Journal of Materials Chemistry C, 2018, 6, 11686-11693.	2.7	28
30	Manipulating Depletion Region of Aqueousâ€Processed Nanocrystals Solar Cells with Widened Fermi Level Offset. Small, 2018, 14, e1803072.	5.2	3
31	Hollow Pd Nanospheres Conjugated with Ce6 To Simultaneously Realize Photodynamic and Photothermal Therapy. ACS Applied Bio Materials, 2018, 1, 1102-1108.	2.3	16
32	Molecular Engineering of Phenylbenzimidazole-Based Orange Ir(III) Phosphors toward High-Performance White OLEDs. Inorganic Chemistry, 2018, 57, 6029-6037.	1.9	12
33	Layered g-C ₃ N ₄ @Reduced Graphene Oxide Composites as Anodes with Improved Rate Performance for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2018, 10, 30330-30336.	4.0	40
34	Aqueous-Processed Polymer/Nanocrystal Hybrid Solar Cells with Efficiency of 5.64%: The Impact of Device Structure, Polymer Content, and Film Thickness. Journal of Physical Chemistry C, 2017, 121, 2025-2034.	1.5	13
35	Design and synthesis of dodecahedral carbon nanocages incorporated with Fe ₃ O ₄ . RSC Advances, 2017, 7, 13257-13262.	1.7	10
36	Oxygenâ€Deficient Titanium Dioxide Nanosheets as More Effective Polysulfide Reservoirs for Lithiumâ€Sulfur Batteries. Chemistry - A European Journal, 2017, 23, 9666-9673.	1.7	60

#	Article	IF	CITATIONS
37	Fabrication of boron-doped porous carbon with termite nest shape via natural macromolecule and borax to obtain lithium-sulfur/sodium-ion batteries with improved rate performance. Electrochimica Acta, 2017, 244, 86-95.	2.6	26
38	Synergistic mediation of sulfur conversion in lithium–sulfur batteries by a Gerber tree-like interlayer with multiple components. Journal of Materials Chemistry A, 2017, 5, 11255-11262.	5.2	49
39	Co ₃ O ₄ Nanospheres Embedded in a Nitrogen-Doped Carbon Framework: An Electrode with Fast Surface-Controlled Redox Kinetics for Lithium Storage. ACS Energy Letters, 2017, 2, 52-59.	8.8	61
40	Di-/trinuclear cationic Ir(III) complexes: Design, synthesis and application for highly sensitive and selective detection of TNP in aqueous solution. Sensors and Actuators B: Chemical, 2017, 244, 314-322.	4.0	19
41	Copper-Catalyzed Azidative Multifunctionalization of Alkynes. Journal of Organic Chemistry, 2017, 82, 12813-12820.	1.7	16
42	Rational molecular design of aggregation-induced emission cationic Ir(<scp>iii</scp>) phosphors achieving supersensitive and selective detection of nitroaromatic explosives. Journal of Materials Chemistry C, 2017, 5, 10847-10854.	2.7	40
43	Chelation Competition Induced Polymerization (CCIP): A Binding Energy Based Strategy for Nonspherical Polymer Nanocontainers' Fabrication. Chemistry of Materials, 2017, 29, 6536-6543.	3.2	25
44	Achieving High Performances of Nondoped OLEDs Using Carbazole and Diphenylphosphoryl-Functionalized Ir(III) Complexes as Active Components. Inorganic Chemistry, 2017, 56, 9979-9987.	1.9	30
45	Porous Carbon with Willow-Leaf-Shaped Pores for High-Performance Supercapacitors. ACS Applied Materials & Interfaces, 2017, 9, 42699-42707.	4.0	36
46	3D porous ZnO–SnS p–n heterojunction for visible light driven photocatalysis. Physical Chemistry Chemical Physics, 2017, 19, 16576-16585.	1.3	86
47	Simple molecular structure design of iridium(III) complexes: Achieving highly efficient non-doped devices with low efficiency roll-off. Organic Electronics, 2016, 35, 142-150.	1.4	20
48	Shale-like Co ₃ O ₄ for high performance lithium/sodium ion batteries. Journal of Materials Chemistry A, 2016, 4, 8242-8248.	5.2	108
49	Assembly of MnCO 3 nanoplatelets synthesized at low temperature on graphene to achieve anode materials with high rate performance for lithium-ion batteries. Electrochimica Acta, 2016, 215, 267-275.	2.6	43
50	Aggregation-induced emission (AIE) active iridium complexes toward highly efficient single-layer non-doped electroluminescent devices. Journal of Materials Chemistry C, 2016, 4, 10464-10470.	2.7	27
51	Synergistic Design of Cathode Region for the High-Energy-Density Li–S Batteries. ACS Applied Materials & Interfaces, 2016, 8, 28689-28699.	4.0	29
52	Ir(III) Phosphors Modified with Fluorine Atoms in Pyridine-1,2,4-triazolyl Ligands for Efficient OLEDs Possessing Low-Efficiency Roll-off. Organometallics, 2016, 35, 3870-3877.	1.1	23
53	Carbon-Free Porous Zn ₂ GeO ₄ Nanofibers as Advanced Anode Materials for High-Performance Lithium Ion Batteries. ACS Applied Materials & Interfaces, 2016, 8, 31722-31728.	4.0	26
54	Low efficiency roll-off and high performance OLEDs employing alkyl group modified iridium(<scp>iii</scp>) complexes as emitters. RSC Advances, 2016, 6, 111556-111563.	1.7	7

#	Article	IF	CITATIONS
55	Highly Regio―and Stereoselective Intermolecular Seleno―and Thioamination of Alkynes. Chemistry - A European Journal, 2016, 22, 3513-3518.	1.7	48
56	The Effective Design of a Polysulfide-Trapped Separator at the Molecular Level for High Energy Density Li–S Batteries. ACS Applied Materials & Interfaces, 2016, 8, 16108-16115.	4.0	103
57	Hierarchicallyâ€Porous Carbon Derived from a Large‣cale Ironâ€based Organometallic Complex for Versatile Energy Storage. ChemSusChem, 2016, 9, 1483-1489.	3.6	8
58	Alkaliâ€Metalâ€Ionâ€Functionalized Graphene Oxide as a Superior Anode Material for Sodiumâ€Ion Batteries. Chemistry - A European Journal, 2016, 22, 8152-8157.	1.7	18
59	A Novel Layered Sedimentary Rocks Structure of the Oxygen-Enriched Carbon for Ultrahigh-Rate-Performance Supercapacitors. ACS Applied Materials & Interfaces, 2016, 8, 4233-4241.	4.0	58
60	Aqueous-Processed Insulating Polymer/Nanocrystal Hybrid Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 7101-7110.	4.0	23
61	Polypyrrole-coated flower-like Pd nanoparticles (Pd NPs@PPy) with enhanced stability and heat conversion efficiency for cancer photothermal therapy. RSC Advances, 2016, 6, 15854-15860.	1.7	24
62	In Situ Binding Sb Nanospheres on Graphene via Oxygen Bonds as Superior Anode for Ultrafast Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2016, 8, 7790-7799.	4.0	167
63	Towards an efficient blue emission cationic lr(<scp>iii</scp>) complex with azole-type ancillary ligands: a joint theoretical and experimental study. New Journal of Chemistry, 2016, 40, 4635-4642.	1.4	5
64	Flexible paper electrodes constructed from Zn ₂ GeO ₄ nanofibers anchored with amorphous carbon for advanced lithium ion batteries. Journal of Materials Chemistry A, 2016, 4, 2055-2059.	5.2	21
65	The Influence of Surface Modification on the Photoluminescence of CdTe Quantum Dots: Realization of Bioâ€Imaging via Costâ€Effective Polymer. ChemPhysChem, 2015, 16, 3687-3694.	1.0	11
66	Full Protection for Graphene-Incorporated Micro-/Nanocomposites Containing Ultra-small Active Nanoparticles: the Best Li-Storage Properties. Particle and Particle Systems Characterization, 2015, 32, 1020-1027.	1.2	41
67	Colloidal synthesis of marcasite FeS ₂ nanoparticles with improved electrochemical performance. RSC Advances, 2015, 5, 98967-98970.	1.7	28
68	Nanoscale Polysulfides Reactors Achieved by Chemical Au–S Interaction: Improving the Performance of Li–S Batteries on the Electrode Level. ACS Applied Materials & Interfaces, 2015, 7, 27959-27967.	4.0	65
69	Dual-Porosity SiO ₂ /C Nanocomposite with Enhanced Lithium Storage Performance. Journal of Physical Chemistry C, 2015, 119, 3495-3501.	1.5	105
70	Simultaneous modification of N-alkyl chains on cyclometalated and ancillary ligands of cationic iridium(iii) complexes towards efficient piezochromic luminescence properties. Journal of Materials Chemistry C, 2015, 3, 2341-2349.	2.7	37
71	Fabrication of functionalized polysulfide reservoirs from large graphene sheets to improve the electrochemical performance of lithium–sulfur batteries. Physical Chemistry Chemical Physics, 2015, 17, 23481-23488.	1.3	19
72	A vertical and cross-linked Ni(OH) ₂ network on cellulose-fiber covered with graphene as a binder-free electrode for advanced asymmetric supercapacitors. Journal of Materials Chemistry A, 2015, 3, 19077-19084.	5.2	47

#	Article	IF	CITATIONS
73	Preparation of ligand free Au NPs/PPV composites with high stability and photo-electric response. Chinese Journal of Polymer Science (English Edition), 2015, 33, 215-223.	2.0	4
74	Hierarchical manipulation of uniform multi-nanoparticles by electrochemical coupling assembly. Journal of Materials Chemistry C, 2015, 3, 5214-5219.	2.7	6
75	A sulfur-free iridium(<scp>iii</scp>) complex for highly selective and multi-signaling mercury(<scp>ii</scp>)-chemosensors. Dalton Transactions, 2015, 44, 19997-20003.	1.6	17
76	Modification of iridium(III) complexes for fabrication of high-performance non-doped organic light-emitting diode. Dyes and Pigments, 2015, 112, 8-16.	2.0	32
77	Iridium(iii) complexes adopting 1,2-diphenyl-1H-benzoimidazole ligands for highly efficient organic light-emitting diodes with low efficiency roll-off and non-doped feature. Journal of Materials Chemistry C, 2014, 2, 2150.	2.7	78
78	A novel approach to prepare Si/C nanocomposites with yolk–shell structures for lithium ion batteries. RSC Advances, 2014, 4, 36218-36225.	1.7	37
79	A cationic iridium(<scp>iii</scp>) complex with aggregation-induced emission (AIE) properties for highly selective detection of explosives. Chemical Communications, 2014, 50, 6031-6034.	2.2	115
80	Effect of alkyl chain length on piezochromic luminescence of iridium(<scp>iii</scp>)-based phosphors adopting 2-phenyl-1H-benzoimidazole type ligands. Journal of Materials Chemistry C, 2014, 2, 7648-7655.	2.7	47
81	Efficient non-doped phosphorescent orange, blue and white organic light-emitting devices. Scientific Reports, 2014, 4, 6754.	1.6	40
82	Influence of alkyl chain lengths on the properties of iridium(III)-based piezochromic luminescent dyes with triazole-pyridine type ancillary ligands. Dyes and Pigments, 2013, 99, 1082-1090.	2.0	22
83	An orange iridium(iii) complex with wide-bandwidth in electroluminescence for fabrication of high-quality white organic light-emitting diodes. Journal of Materials Chemistry C, 2013, 1, 7371.	2.7	52
84	The effects of composition and surface chemistry on the toxicity of quantum dots. Journal of Materials Chemistry B, 2013, 1, 6485.	2.9	59
85	Gold nanoparticle superstructures with enhanced photothermal effect. CrystEngComm, 2013, 15, 3490.	1.3	18
86	Enhancing the luminescence properties and stability of cationic iridium(iii) complexes based on phenylbenzoimidazole ligand: a combined experimental and theoretical study. Dalton Transactions, 2013, 42, 11056.	1.6	28
87	Coordinatable and High Chargeâ€Carrierâ€Mobility Waterâ€Soluble Conjugated Copolymers for Effective Aqueousâ€Processed Polymer–Nanocrystal Hybrid Solar Cells and OFET Applications. Advanced Functional Materials, 2013, 23, 4035-4042.	7.8	26
88	Controllable synthesis of iridium(iii)-based aggregation-induced emission and/or piezochromic luminescence phosphors by simply adjusting the substitution on ancillary ligands. Journal of Materials Chemistry C, 2013, 1, 1440.	2.7	107
89	Decoration of up-converting NaYF4:Yb,Er(Tm) nanoparticles with surfactant bilayer. A versatile strategy to perform oil-to-water phase transfer and subsequently surface silication. CrystEngComm, 2012, 14, 3484.	1.3	29
90	Self-Assembly of CdTe Nanoparticles into Dendrite Structure: A Microsensor to Hg ²⁺ . Langmuir, 2011, 27, 1136-1142.	1.6	30

#	Article	IF	CITATIONS
91	Controllable Synthesis of Stable Urchin-like Gold Nanoparticles Using Hydroquinone to Tune the Reactivity of Gold Chloride. Journal of Physical Chemistry C, 2011, 115, 3630-3637.	1.5	196
92	Simple Synthesis of Highly Luminescent Water-Soluble CdTe Quantum Dots with Controllable Surface Functionality. Chemistry of Materials, 2011, 23, 4857-4862.	3.2	124
93	Synthesis and Characterization of CdTe Nanoparticle/Polymer Functional Composites. Journal of Nanoscience and Nanotechnology, 2009, 9, 7374-8.	0.9	1
94	White-light emission nanofibers obtained from assembling aqueous single-colored CdTe NCs into a PPV precursor and PVA matrix. Journal of Materials Chemistry, 2009, 19, 6740.	6.7	35
95	Preparation of Carbazole-Containing Amphiphilic Copolymers: An Efficient Method for the Incorporation of Functional Nanocrystals. Macromolecular Materials and Engineering, 2006, 291, 929-936.	1.7	11