
Hiram Luna-MunguÃ-a

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4843508/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Longitudinal changes in gray and white matter microstructure during epileptogenesis in pilocarpine-induced epileptic rats. Seizure: the Journal of the British Epilepsy Association, 2021, 90, 130-140.	2.0	9
2	Insights into Potential Targets for Therapeutic Intervention in Epilepsy. International Journal of Molecular Sciences, 2020, 21, 8573.	4.1	22
3	Memory deficits in Sprague Dawley rats with spontaneous ventriculomegaly. Brain and Behavior, 2020, 10, e01711.	2.2	8
4	Use and Future Prospects of in Vivo Microdialysis for Epilepsy Studies. ACS Chemical Neuroscience, 2019, 10, 1875-1883.	3.5	19
5	Chemical biomarkers of epileptogenesis and ictogenesis in experimental epilepsy. Neurobiology of Disease, 2019, 121, 177-186.	4.4	23
6	Control of in vivo ictogenesis via endogenous synaptic pathways. Scientific Reports, 2017, 7, 1311.	3.3	9
7	The Blood–Brain Barrier and the Design of New Antiepileptic Drugs. Methods in Pharmacology and Toxicology, 2016, , 221-236.	0.2	0
8	Transcranial focal electrical stimulation reduces seizure activity and hippocampal glutamate release during status epilepticus. , 2015, 2015, 6586-9.		3
9	Transcranial focal electrical stimulation reduces the convulsive expression and amino acid release in the hippocampus during pilocarpine-induced status epilepticus in rats. Epilepsy and Behavior, 2015, 49, 33-39.	1.7	16
10	Glutamate-Mediated Upregulation of the Multidrug Resistance Protein 2 in Porcine and Human Brain Capillaries. Journal of Pharmacology and Experimental Therapeutics, 2015, 352, 368-378.	2.5	23
11	Glutamate-Mediated Down-Regulation of the Multidrug-Resistance Protein BCRP/ABCG2 in Porcine and Human Brain Capillaries. Molecular Pharmaceutics, 2015, 12, 2049-2060.	4.6	22
12	CNS Transporters and Drug Delivery in Epilepsy. Current Pharmaceutical Design, 2014, 20, 1534-1542.	1.9	21
13	Transcranial focal electrical stimulation via tripolar concentric ring electrodes does not modify the short- and long-term memory formation in rats evaluated in the novel object recognition test. Epilepsy and Behavior, 2013, 27, 154-158.	1.7	10
14	Noninvasive Transcranial Focal Stimulation Via Tripolar Concentric Ring Electrodes Lessens Behavioral Seizure Activity of Recurrent Pentylenetetrazole Administrations in Rats. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2013, 21, 383-390.	4.9	16
15	Effects of transcranial focal electrical stimulation alone and associated with a sub-effective dose of diazepam on pilocarpine-induced status epilepticus and subsequent neuronal damage in rats. Epilepsy and Behavior, 2013, 28, 432-436.	1.7	18
16	Toward a Noninvasive Automatic Seizure Control System in Rats With Transcranial Focal Stimulations via Tripolar Concentric Ring Electrodes. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2012, 20, 422-431.	4.9	29
17	Effects of hippocampal highâ€frequency electrical stimulation in memory formation and their association with amino acid tissue content and release in normal rats. Hippocampus, 2012, 22, 98-105.	1.9	22
18	Effects of high frequency electrical stimulation and R-verapamil on seizure susceptibility and glutamate and GABA release in a model of phenytoin-resistant seizures. Neuropharmacology, 2011, 61, 807-814.	4.1	42

#	Article	IF	CITATIONS
19	Electric fields in hippocampus due to transcranial focal electrical stimulation via concentric ring electrodes. , 2011, 2011, 5488-91.		2
20	5-HT1A receptor expression during memory formation. Psychopharmacology, 2005, 181, 309-318.	3.1	46