## Alexander A Auer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/484349/publications.pdf Version: 2024-02-01



ALEXANDED & ALLED

| #  | Article                                                                                                                                                                                                                                                                                | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Comparing London dispersion pnictogen–π interactions in naphthyl-substituted dipnictanes. Dalton<br>Transactions, 2022, 51, 5016-5023.                                                                                                                                                 | 3.3  | 2         |
| 2  | High Level Electronic Structure Calculation of Molecular Solid-State NMR Shielding Constants.<br>Journal of Chemical Theory and Computation, 2022, 18, 2408-2417.                                                                                                                      | 5.3  | 4         |
| 3  | Investigating the stability of graphitic carbon materials in electrocatalysis using electronic structure methods. Carbon, 2021, 171, 618-633.                                                                                                                                          | 10.3 | 7         |
| 4  | Structure and Reactivity of IrO <i><sub>x</sub></i> Nanoparticles for the Oxygen Evolution Reaction<br>in Electrocatalysis: An Electronic Structure Theory Study. Journal of Physical Chemistry C, 2021, 125,<br>4379-4390.                                                            | 3.1  | 15        |
| 5  | DLPNO-MP2 second derivatives for the computation of polarizabilities and NMR shieldings. Journal of Chemical Physics, 2021, 154, 164110.                                                                                                                                               | 3.0  | 35        |
| 6  | Triple Resonance Experiments for the Rapid Detection of <sup>103</sup> Rh NMR Shifts: A Combined<br>Experimental and Theoretical Study into Dirhodium and Bismuth–Rhodium Paddlewheel Complexes.<br>Journal of the American Chemical Society, 2021, 143, 12473-12479.                  | 13.7 | 16        |
| 7  | Are Heavy Pnictogenâ€Ï€ Interactions Really "π Interactionsâ€?. Chemistry - A European Journal, 2021, 27,<br>14520-14526.                                                                                                                                                              | 3.3  | 5         |
| 8  | A Supported Bismuth Halide Perovskite Photocatalyst for Selective Aliphatic and Aromatic C–H Bond<br>Activation. Angewandte Chemie, 2020, 132, 5837-5845.                                                                                                                              | 2.0  | 27        |
| 9  | A Supported Bismuth Halide Perovskite Photocatalyst for Selective Aliphatic and Aromatic C–H Bond<br>Activation. Angewandte Chemie - International Edition, 2020, 59, 5788-5796.                                                                                                       | 13.8 | 160       |
| 10 | Computation of NMR Shielding Constants for Solids Using an Embedded Cluster Approach with DFT,<br>Double-Hybrid DFT, and MP2. Journal of Chemical Theory and Computation, 2020, 16, 6950-6967.                                                                                         | 5.3  | 21        |
| 11 | A case study of density functional theory and domain-based local pair natural orbital coupled cluster for vibrational effects on EPR hyperfine coupling constants: vibrational perturbation theory versus <i>ab initio</i> molecular dynamics. Molecular Physics, 2020, 118, e1797916. | 1.7  | 9         |
| 12 | An introduction to electrochemical energy conversion. EPJ Web of Conferences, 2020, 246, 00018.                                                                                                                                                                                        | 0.3  | 0         |
| 13 | The first microsolvation step for furans: New experiments and benchmarking strategies. Journal of Chemical Physics, 2020, 152, 164303.                                                                                                                                                 | 3.0  | 28        |
| 14 | Studying Natural Buckyballs and Buckybowls in Fossil Materials. Angewandte Chemie, 2020, 132, 15118-15123.                                                                                                                                                                             | 2.0  | 1         |
| 15 | Studying Natural Buckyballs and Buckybowls in Fossil Materials. Angewandte Chemie - International<br>Edition, 2020, 59, 15008-15013.                                                                                                                                                   | 13.8 | 8         |
| 16 | Evaluation of bismuth-based dispersion energy donors – synthesis, structure and theoretical study of<br>2-biphenylbismuth( <scp>iii</scp> ) derivatives. Physical Chemistry Chemical Physics, 2020, 22,<br>10189-10211.                                                                | 2.8  | 5         |
| 17 | Balancing Donorâ€Acceptor and Dispersion Effects in Heavy Main Group Element Ï€ Interactions: Effect<br>of Substituents on the Pnictogenâ‹â‹î€ Arene Interaction. ChemPhysChem, 2019, 20, 2539-2552.<br>                                                                               | 2.1  | 10        |
| 18 | Structure and Reactivity of 1,8-Bis(naphthalenediyl)dipnictanes. Organometallics, 2019, 38, 2927-2942.                                                                                                                                                                                 | 2.3  | 11        |

ALEXANDER A AUER

| #  | Article                                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | High resolution transmission electron microscopy and electronic structure theory investigation of platinum nanoparticles on carbon black. Journal of Chemical Physics, 2019, 150, 041705.                                                       | 3.0  | 14        |
| 20 | The furan microsolvation blind challenge for quantum chemical methods: First steps. Journal of Chemical Physics, 2018, 148, 014301.                                                                                                             | 3.0  | 44        |
| 21 | Self-Consistent Field Calculation of Nuclear Magnetic Resonance Chemical Shielding Constants Using<br>Gauge-Including Atomic Orbitals and Approximate Two-Electron Integrals. Journal of Chemical Theory<br>and Computation, 2018, 14, 619-637. | 5.3  | 70        |
| 22 | Highâ€Level Ab Initio Calculations of Intermolecular Interactions: Heavy Mainâ€Group Element<br>Ï€â€Interactions. Chemistry - A European Journal, 2018, 24, 10238-10245.                                                                        | 3.3  | 22        |
| 23 | Efficient and Accurate Prediction of Nuclear Magnetic Resonance Shielding Tensors with<br>Double-Hybrid Density Functional Theory. Journal of Chemical Theory and Computation, 2018, 14,<br>4756-4771.                                          | 5.3  | 75        |
| 24 | Evaluation of dispersion type metal··ÄE arene interaction in arylbismuth compounds – an experimental and theoretical study. Beilstein Journal of Organic Chemistry, 2018, 14, 2125-2145.                                                        | 2.2  | 25        |
| 25 | Pair natural orbital and canonical coupled cluster reaction enthalpies involving light to heavy alkali<br>and alkaline earth metals: the importance of sub-valence correlation. Physical Chemistry Chemical<br>Physics, 2017, 19, 9374-9391.    | 2.8  | 43        |
| 26 | Standardized Benchmarking of Water Splitting Catalysts in a Combined Electrochemical Flow<br>Cell/Inductively Coupled Plasma–Optical Emission Spectrometry (ICP-OES) Setup. ACS Catalysis, 2017, 7,<br>3768-3778.                               | 11.2 | 73        |
| 27 | Automatic Generation of Auxiliary Basis Sets. Journal of Chemical Theory and Computation, 2017, 13, 554-562.                                                                                                                                    | 5.3  | 384       |
| 28 | Treating Subvalence Correlation Effects in Domain Based Pair Natural Orbital Coupled Cluster<br>Calculations: An Out-of-the-Box Approach. Journal of Chemical Theory and Computation, 2017, 13,<br>3220-3227.                                   | 5.3  | 45        |
| 29 | Understanding the Role of Dispersion in Frustrated Lewis Pairs and Classical Lewis Adducts: A<br>Domainâ€Based Local Pair Natural Orbital Coupled Cluster Study. Chemistry - A European Journal, 2017,<br>23, 865-873.                          | 3.3  | 91        |
| 30 | Electronic Structure Calculations and Experimental Studies on the Thermal Initiation of the Twin Polymerization Process. ChemPlusChem, 2017, 82, 1396-1407.                                                                                     | 2.8  | 4         |
| 31 | Decomposition of Intermolecular Interaction Energies within the Local Pair Natural Orbital Coupled Cluster Framework. Journal of Chemical Theory and Computation, 2016, 12, 4778-4792.                                                          | 5.3  | 231       |
| 32 | Porous Ge@C materials via twin polymerization of germanium( <scp>ii</scp> ) salicyl alcoholates for<br>Li-ion batteries. Journal of Materials Chemistry A, 2016, 4, 2705-2719.                                                                  | 10.3 | 21        |
| 33 | MAXNET Energy – Focusing Research in Chemical Energy Conversion on the Electrocatlytic Oxygen<br>Evolution. Green, 2015, 5, .                                                                                                                   | 0.4  | 3         |
| 34 | Identifying Stereoisomers by ab-initio Calculation of Secondary Isotope Shifts on NMR Chemical Shieldings. Molecules, 2014, 19, 5301-5312.                                                                                                      | 3.8  | 4         |
| 35 | Constant chemical potential approach for quantum chemical calculations in electrocatalysis.<br>Beilstein Journal of Nanotechnology, 2014, 5, 668-676.                                                                                           | 2.8  | 17        |
| 36 | Microporous Carbon and Mesoporous Silica by Use of Twin Polymerization: An Integrated<br>Experimental and Theoretical Approach to Precursor Reactivity. ChemPlusChem, 2014, 79, 1009-1023.                                                      | 2.8  | 27        |

ALEXANDER A AUER

| #  | Article                                                                                                                                                                | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Thermally Induced Twin Polymerization of 4 <i>H</i> â€1,3,2â€Benzodioxasilines. Chemistry - A European<br>Journal, 2014, 20, 8040-8053.                                | 3.3  | 30        |
| 38 | Modelling electrified interfaces in quantum chemistry: constant charge vs. constant potential.<br>Physical Chemistry Chemical Physics, 2013, 15, 2712.                 | 2.8  | 31        |
| 39 | Interaction of Platinum Nanoparticles with Graphitic Carbon Structures: A Computational Study.<br>ChemPhysChem, 2013, 14, 2984-2989.                                   | 2.1  | 36        |
| 40 | Theoretical Study of Twin Polymerization – From Chemical Reactivity to Structure Formation.<br>Macromolecular Theory and Simulations, 2012, 21, 615-628.               | 1.4  | 30        |
| 41 | Quantitative prediction of gas-phase N15 and P31 nuclear magnetic shielding constants. Journal of<br>Chemical Physics, 2010, 132, 064109.                              | 3.0  | 37        |
| 42 | Quantitative prediction of gas-phase O17 nuclear magnetic shielding constants. Journal of Chemical Physics, 2009, 131, 024116.                                         | 3.0  | 31        |
| 43 | Nanocomposites with Structure Domains of 0.5 to 3â€nm by Polymerization of Silicon Spiro Compounds.<br>Angewandte Chemie - International Edition, 2009, 48, 8254-8258. | 13.8 | 63        |
| 44 | High-level ab-initio calculation of gas-phase NMR chemical shifts and secondary isotope effects of methanol. Chemical Physics Letters, 2009, 467, 230-232.             | 2.6  | 29        |
| 45 | Bismuthâ^Arene Ï€-Interaction: A Combined Experimental and Theoretical Approach. Organometallics, 2009, 28, 5405-5411.                                                 | 2.3  | 58        |
| 46 | Quantitative prediction of gas-phase F19 nuclear magnetic shielding constants. Journal of Chemical Physics, 2008, 128, 244111.                                         | 3.0  | 79        |
| 47 | Full configuration-interaction and coupled-cluster calculations of the indirect spin–spin coupling constant of BH. Chemical Physics Letters, 2003, 368, 172-176.       | 2.6  | 32        |
| 48 | Quantitative prediction of gas-phase 13C nuclear magnetic shielding constants. Journal of Chemical Physics, 2003, 118, 10407-10417.                                    | 3.0  | 246       |