D C Bazin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4843389/publications.pdf

Version: 2024-02-01

150	6,047	40	70
papers	citations	h-index	g-index
159	159	159	5097
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	A Reexamination of Hydrotalcite Crystal Chemistry. The Journal of Physical Chemistry, 1996, 100, 8527-8534.	2.9	396
2	Reducibility of Cobalt Species in Silica-Supported Fischer–Tropsch Catalysts. Journal of Catalysis, 1997, 168, 16-25.	6.2	310
3	Hydrotalcite Decomposition Mechanism:Â A Clue to the Structure and Reactivity of Spinel-like Mixed Oxides. The Journal of Physical Chemistry, 1996, 100, 8535-8542.	2.9	233
4	Crystallization of β-MnO2 Nanowires in the Pores of SBA-15 Silicas:  In Situ Investigation Using Synchrotron Radiation. Chemistry of Materials, 2004, 16, 1813-1821.	6.7	192
5	Characterization and Some Physicochemical Aspects of Pathological Microcalcifications. Chemical Reviews, 2012, 112, 5092-5120.	47.7	162
6	Microstructure of Supported Cobalt Fischer-Tropsch Catalysts. Oil and Gas Science and Technology, 2009, 64, 49-62.	1.4	137
7	Articular cartilage calcification in osteoarthritis: Insights into crystalâ€induced stress. Arthritis and Rheumatism, 2011, 63, 10-18.	6.7	134
8	Comparison between X-ray Absorption Spectroscopy, Anomalous Wide Angle X-ray Scattering, Anomalous Small Angle X-ray Scattering, and Diffraction Anomalous Fine Structure Techniques Applied to Nanometer-Scale Metallic Clusters. Journal of Physical Chemistry B, 1997, 101, 11040-11050.	2.6	124
9	Peculiar Morphology of Stones in Primary Hyperoxaluria. New England Journal of Medicine, 2008, 359, 100-102.	27.0	117
10	Relationships Between Carbonation Rate of Carbapatite and Morphologic Characteristics of Calcium Phosphate Stones and Etiology. Urology, 2009, 73, 968-975.	1.0	114
11	Vancomycin-Associated Cast Nephropathy. Journal of the American Society of Nephrology: JASN, 2017, 28, 1723-1728.	6.1	112
12	Limits and Advantages of X-ray Absorption Near Edge Structure for Nanometer Scale Metallic Clusters. Journal of Physical Chemistry B, 2003, 107, 12398-12402.	2.6	110
13	Drug-Induced Kidney Stones and Crystalline Nephropathy: Pathophysiology, Prevention and Treatment. Drugs, 2018, 78, 163-201.	10.9	110
14	Heavy elements in urinary stones. Urological Research, 2007, 35, 179-184.	1.5	107
15	Composition and morphology of phosphate stones and their relation with etiology. Urological Research, 2010, 38, 459-467.	1.5	100
16	AuPd bimetallic nanoparticles on TiO2: XRD, TEM, in situ EXAFS studies and catalytic activity in CO oxidation. Journal of Molecular Catalysis A, 2003, 204-205, 545-552.	4.8	96
17	Examination of whewellite kidney stones by scanning electron microscopy and powder neutron diffraction techniques. Journal of Applied Crystallography, 2009, 42, 109-115.	4.5	93
18	Pathogenic Role of Basic Calcium Phosphate Crystals in Destructive Arthropathies. PLoS ONE, 2013, 8, e57352.	2.5	92

#	Article	IF	Citations
19	Comprehensive morpho-constitutional analysis of urinary stones improves etiological diagnosis and therapeutic strategy of nephrolithiasis. Comptes Rendus Chimie, 2016, 19, 1470-1491.	0.5	89
20	Randall's plaque as the origin of calcium oxalate kidney stones. Urolithiasis, 2015, 43, 5-11.	2.0	82
21	Diffraction techniques and vibrational spectroscopy opportunities to characterise bones. Osteoporosis International, 2009, 20, 1065-1075.	3.1	78
22	Absence of Bacterial Imprints on Struvite-containing Kidney Stones: A Structural Investigation at the Mesoscopic and Atomic Scale. Urology, 2012, 79, 786-790.	1.0	69
23	Recurrence rates of urinary calculi according to stone composition and morphology. Urolithiasis, 2018, 46, 459-470.	2.0	68
24	Structure and selectivity of metal catalysts: revisiting bimetallic zeolite systems. Applied Catalysis A: General, 1999, 188, 163-174.	4.3	66
25	Photothermal AFM-IR spectroscopy and imaging: Status, challenges, and trends. Journal of Applied Physics, 2022, 131, .	2.5	65
26	Characterisation of Calcium Phosphate Crystals on Calcified Human Aortic Vascular Smooth Muscle Cells and Potential Role of Magnesium. PLoS ONE, 2015, 10, e0115342.	2.5	64
27	Genesis of Co/SiO2 Catalysts: XAS Study at the Cobalt LIII,II Absorption Edges. Journal of Catalysis, 2000, 189, 456-462.	6.2	60
28	High Zn content of Randall's plaque: A $1\frac{1}{4}$ -X-ray fluorescence investigation. Journal of Trace Elements in Medicine and Biology, 2011, 25, 160-165.	3.0	60
29	Prostatic Stones: Evidence of a Specific Chemistry Related to Infection and Presence of Bacterial Imprints. PLoS ONE, 2012, 7, e51691.	2.5	60
30	Stones in Primary Hyperoxaluria â€" A Clarification. New England Journal of Medicine, 2009, 360, 1680-1680.	27.0	59
31	Revisiting the localisation of Zn2+ cations sorbed on pathological apatite calcifications made through X-ray absorption spectroscopy. Biochimie, 2009, 91, 1294-1300.	2.6	57
32	Pathological calcifications and selected examples at the medicine–solid-state physics interface. Journal Physics D: Applied Physics, 2012, 45, 383001.	2.8	54
33	Shedding Light on the Chemical Diversity of Ectopic Calcifications in Kidney Tissues: Diagnostic and Research Aspects. PLoS ONE, 2011, 6, e28007.	2.5	53
34	Calcium Phosphate Stone Morphology Can Reliably Predict Distal Renal Tubular Acidosis. Journal of Urology, 2015, 193, 1564-1569.	0.4	52
35	Claudin-16 Deficiency Impairs Tight Junction Function in Ameloblasts, Leading to Abnormal Enamel Formation. Journal of Bone and Mineral Research, 2016, 31, 498-513.	2.8	50
36	Revisiting spatial distribution and biochemical composition of calcium-containing crystals in human osteoarthritic articular cartilage. Arthritis Research and Therapy, 2013, 15, R103.	3.5	49

#	Article	IF	CITATIONS
37	Respective influence of calcium and oxalate urine concentration on the formation of calcium oxalate monohydrate or dihydrate crystals. Comptes Rendus Chimie, 2016, 19, 1504-1513.	0.5	48
38	Anomalous wide angle X-ray scattering (AWAXS) and heterogeneous catalysts. Applied Catalysis A: General, 2002, 226, 87-113.	4.3	46
39	ABCC6 Deficiency Promotes Development of Randall Plaque. Journal of the American Society of Nephrology: JASN, 2018, 29, 2337-2347.	6.1	46
40	The pathogenesis of Randall's plaque: a papilla cartography of Ca compounds through an <i>ex vivo</i> investigation based on XANES spectroscopy. Journal of Synchrotron Radiation, 2010, 17, 374-379.	2.4	44
41	The status of strontium in biological apatites: anÂXANES/EXAFS investigation. Journal of Synchrotron Radiation, 2014, 21, 136-142.	2.4	43
42	Topography, Composition and Structure of Incipient Randall Plaque at the Nanoscale Level. Journal of Urology, 2016, 196, 1566-1574.	0.4	43
43	Fragments and dust after Holmium laser lithotripsy with or without "Moses technology― How are they different?. Journal of Biophotonics, 2019, 12, e201800227.	2.3	42
44	Calcifications in human osteoarthritic articular cartilage: <i>ex vivo</i> ex vivoompounds using XANES spectroscopy. Journal of Synchrotron Radiation, 2011, 18, 475-480.	2.4	40
45	Whewellite, CaC2O4â«H2O: structural study by a combined NMR, crystallography and modelling approach. CrystEngComm, 2013, 15, 8840.	2.6	40
46	Calcium oxalate precipitation by diffusion using laminar microfluidics: toward a biomimetic model of pathological microcalcifications. Lab on A Chip, 2016, 16, 1157-1160.	6.0	40
47	Free DNA precipitates calcium phosphate apatite crystals in the arterial wall inÂvivo. Atherosclerosis, 2017, 259, 60-67.	0.8	40
48	Nanoscale Analysis of Randall's Plaques by Electron Energy Loss Spectromicroscopy: Insight in Early Biomineral Formation in Human Kidney. ACS Nano, 2020, 14, 1823-1836.	14.6	39
49	Some advances in the field of physico-chemical characterization of pathological microcrystals. Annales De Biologie Clinique, 2015, 73, 517-534.	0.1	38
50	Hyperoxaluria is related to whewellite and hypercalciuria to weddellite: What happens when crystalline conversion occurs?. Comptes Rendus Chimie, 2016, 19, 1492-1503.	0.5	38
51	Very first tests on SOLEIL regarding the Zn environment in pathological calcifications made of apatite determined by X-ray absorption spectroscopy. Journal of Synchrotron Radiation, 2008, 15, 506-509.	2.4	37
52	Stone Morphology: Implication for Pathogenesis. AIP Conference Proceedings, 2008, , .	0.4	35
53	Bimetallic reforming catalysts: EXAFS investigation of the particle-growing process during the reduction step. Journal of Catalysis, 1990, 123, 86-97.	6.2	34
54	The status of strontium in biological apatites: anÂXANES investigation. Journal of Synchrotron Radiation, 2011, 18, 912-918.	2.4	34

#	Article	IF	CITATIONS
55	Combining $\hat{l}\frac{1}{4}$ X-ray fluorescence, $\hat{l}\frac{1}{4}$ XANES and $\hat{l}\frac{1}{4}$ XRD to shed light on Zn2+ cations in cartilage and meniscus calcifications. Journal of Trace Elements in Medicine and Biology, 2013, 27, 326-333.	3.0	34
56	Urate-induced acute renal failure and chronic inflammation in liver-specific Glut9 knockout mice. American Journal of Physiology - Renal Physiology, 2013, 305, F786-F795.	2.7	34
57	Vibrational spectroscopies to investigate concretions and ectopic calcifications for medical diagnosis. Comptes Rendus Chimie, 2016, 19, 1416-1423.	0.5	32
58	Localization, Morphologic Features, and Chemical Composition of Calciphylaxis-Related Skin Deposits in Patients With Calcific Uremic Arteriolopathy. JAMA Dermatology, 2019, 155, 789.	4.1	31
59	Calcium and vitamin D have a synergistic role in a rat model of kidney stone disease. Kidney International, 2016, 90, 809-817.	5.2	30
60	Underlining the complexity of the structural and chemical characteristics of ectopic calcifications in breast tissues through FE-SEM and νFTIR spectroscopy. Comptes Rendus Chimie, 2016, 19, 1610-1624.	0.5	30
61	Therapy modifies cystine kidney stones at the macroscopic scale. Do such alterations exist at the mesoscopic and nanometre scale?. Journal of Applied Crystallography, 2014, 47, 719-725.	4.5	29
62	An Animal Model of Type A Cystinuria Due to Spontaneous Mutation in 129S2/SvPasCrl Mice. PLoS ONE, 2014, 9, e102700.	2.5	28
63	In situ high temperature and high pressure exafs studie of Pt/Al2O3 catalysts. Part I: Reduction and deactivation. Catalysis Letters, 1991, 8, 283-295.	2.6	27
64	Crystalluria analysis improves significantly etiologic diagnosis and therapeutic monitoring of nephrolithiasis. Comptes Rendus Chimie, 2016, 19, 1514-1526.	0.5	27
65	Vibrational Signatures of Calcium Oxalate Polyhydrates. ChemistrySelect, 2018, 3, 8801-8812.	1.5	27
66	X-Ray Absorption Spectroscopy and Anomalous Wide Angle X-Ray Scattering: Two Basic Tools in the Analysis of Heterogeneous Catalysts. Oil and Gas Science and Technology, 2003, 58, 667-683.	1.4	26
67	Nanocasting, templated syntheses and structural studies of manganese oxide nanoparticles nucleated in the pores of ordered mesoporous silicas (SBA-15). Comptes Rendus Chimie, 2005, 8, 663-677.	0.5	26
68	Vitamin D and Calcium Supplementation Accelerates Randall's Plaque Formation in a Murine Model. American Journal of Pathology, 2019, 189, 2171-2180.	3.8	24
69	In situ study by XAS of the sulfidation of industrial catalysts: the Pt and PTReAl2O3 systems. Applied Catalysis A: General, 1997, 162, 171-180.	4.3	23
70	When the Synchrotron radiations highlight the Randall's plaques and kidney concretions. Journal of Physics: Conference Series, 2013, 425, 022006.	0.4	23
71	Combining field effect scanning electron microscopy, deep UV fluorescence, Raman, classical and synchrotron radiation Fourier transform Infra-Red Spectroscopy in the study of crystal-containing kidney biopsies. Comptes Rendus Chimie, 2016, 19, 1439-1450.	0.5	23
72	Ru-Co/NaY bimetallic catalysts: in situ EXAFS study at Co K- and Ru K-absorption edges. Applied Catalysis A: General, 2003, 242, 179-186.	4.3	22

#	Article	IF	Citations
73	Chemical diversity of calcifications in thyroid and hypothetical link to disease. Comptes Rendus Chimie, 2016, 19, 1672-1678.	0.5	22
74	Randall's plaque and kidney stones: Recent advances and future challenges. Comptes Rendus Chimie, 2016, 19, 1456-1460.	0.5	22
75	In-lab X-ray fluorescence and diffraction techniques for pathological calcifications. Comptes Rendus Chimie, 2016, 19, 1404-1415.	0.5	22
76	Analysis of hydroxyapatite crystallites in subchondral bone by Fourier transform infrared spectroscopy and powder neutron diffraction methods. Comptes Rendus Chimie, 2016, 19, 1625-1630.	0.5	22
77	Racemic calcium tartrate tetrahydrate [form (II)] in rat urinary stones. Acta Crystallographica Section B: Structural Science, 2009, 65, 350-354.	1.8	21
78	Localization and characterization of thyroid microcalcifications: A histopathological study. PLoS ONE, 2019, 14, e0224138.	2.5	19
79	New trends in heterogeneous catalysis processes on metallic clusters from synchrotron radiation and theoretical studies. Applied Surface Science, 2000, 164, 140-146.	6.1	18
80	Interaction Between Pt(acac)2 and Alumina Surfaces Studied by XAS. Catalysis Letters, 2003, 85, 25-31.	2.6	18
81	Comment on "Operando DRIFTS and XANES Study of Deactivating Effect of CO ₂ on a Ce _{0.8} Cu _{0.2} O ₂ CO-PROX Catalyst― Journal of Physical Chemistry C, 2011, 115, 23233-23236.	3.1	18
82	Rapid and reliable diagnosis of Wilson disease using Xâ€ray fluorescence. Journal of Pathology: Clinical Research, 2016, 2, 175-186.	3.0	18
83	Combination of X-ray synchrotron radiation techniques to gather information for clinicians. Comptes Rendus Chimie, 2016, 19, 1424-1431.	0.5	18
84	Nanometric Chemical Speciation of Abnormal Deposits in Kidney Biopsy: Infrared-Nanospectroscopy Reveals Heterogeneities within Vancomycin Casts. Analytical Chemistry, 2020, 92, 7388-7392.	6.5	18
85	One Step Further in the Elucidation of the Crystallographic Structure of Whitlockite. Crystal Growth and Design, 2020, 20, 2553-2561.	3.0	18
86	Twoâ€photon optical imaging, spectral and fluorescence lifetime analysis to discriminate urothelial carcinoma grades. Journal of Biophotonics, 2018, 11, e201800065.	2.3	17
87	Comparison between XAS, AWAXS and DAFS Applied to Nanometer Scale Supported Metallic Clusters: Part II Bimetallic Clusters. Japanese Journal of Applied Physics, 1993, 32, 252.	1.5	16
88	Detection of silica and calcium carbonate deposits in granulomatous areas of skin sarcoidosis by \hat{l} 4Fourier transform infrared spectroscopy and Field Emission Scanning Electron Microscopy coupled with Energy Dispersive X-ray Spectroscopy analysis. Comptes Rendus Chimie, 2016, 19, 1631-1641.	0.5	16
89	Investigation of Dispersion and Localization of Platinum Species in Mazzite Using EXAFS. Journal of Physical Chemistry B, 1997, 101, 766-770.	2.6	15
90	Title is missing!. Catalysis Letters, 2003, 87, 85-90.	2.6	15

#	Article	IF	CITATIONS
91	Nephrotoxicity induced by drugs: The case of foscarnet and atazanavir—A SEM and μFTIR investigation. Comptes Rendus Chimie, 2016, 19, 1565-1572.	0.5	15
92	Daily Green Tea Infusions in Hypercalciuric Renal Stone Patients: No Evidence for Increased Stone Risk Factors or Oxalate-Dependent Stones. Nutrients, 2019, 11, 256.	4.1	15
93	Whitlockite structures in kidney stones indicate infectious origin: a scanning electron microscopy and Synchrotron Radiation investigation. Comptes Rendus Chimie, 2022, 25, 343-354.	0.5	15
94	Structural Characterization of Supported Platinum Carbonyl Clusters by X-ray Absorption Spectroscopy. Journal of Physical Chemistry B, 2000, 104, 7050-7056.	2.6	14
95	How to assess the role of Pt and Zn in the nephrotoxicity of Pt anti-cancer drugs? An investigation combining \hat{l}_4 XRF and statistical analysis: Part I: On mice. Comptes Rendus Chimie, 2016, 19, 1580-1585.	0.5	14
96	Using micro computed tomographic imaging for analyzing kidney stones. Comptes Rendus Chimie, 2022, 25, 61-72.	0.5	14
97	In situ high temperature and high pressure exafs studies of Pt/Al2O3 Catalysts. Part II: Carbon removal. Catalysis Letters, 1991, 8, 297-304.	2.6	13
98	Osteoarthritis, a basic calcium phosphate crystal–associated arthropathy? Comment on the article by Fuerst et al. Arthritis and Rheumatism, 2010, 62, 2829-2830.	6.7	13
99	How to assess the role of Pt and Zn in the nephrotoxicity of Pt anti-cancer drugs?: An investigation combining \hat{l}_4 XRF and statistical analysis. Part II: Clinical application. Comptes Rendus Chimie, 2016, 19, 1586-1589.	0.5	13
100	Type 2 diabetes and uric acid stones: A powder neutron diffraction investigation. Comptes Rendus Chimie, 2016, 19, 1527-1534.	0.5	13
101	A new compound in kidney stones? Powder X-ray diffraction study of calcium glycinate trihydrate. Acta Crystallographica Section C: Crystal Structure Communications, 2013, 69, 734-737.	0.4	12
102	High Prevalence of Opaline Silica in Urinary Stones From Burkina Faso. Urology, 2015, 86, 1090-1096.	1.0	12
103	Structural elucidation of silica present in kidney stones coming from Burkina Faso. Comptes Rendus Chimie, 2016, 19, 1573-1579.	0.5	12
104	Advances in the identification of calcium carbonate urinary crystals. Clinica Chimica Acta, 2021, 515, 1-4.	1.1	12
105	Flyscan opportunities in medicine: the case of quantum rattle based on gold quantum dots. Journal of Synchrotron Radiation, 2017, 24, 991-999.	2.4	12
106	Characterization of an Al-, Ga-based catalyst by Ga NMR and XAS. Solid State Nuclear Magnetic Resonance, 2000, 16, 103-108.	2.3	11
107	Operando characterization and DFT modelling of nanospinels: Some examples showing the relationship with catalytic activity. Applied Catalysis A: General, 2015, 504, 631-641.	4.3	11
108	Investigation at the micrometer scale of pancreatic calcifications in chronic pancreatitis by \hat{l} /4FTIR spectroscopy and field emission scanning electron microscopy. Comptes Rendus Chimie, 2016, 19, 1642-1655.	0.5	11

#	Article	IF	CITATIONS
109	Predicting the Activity of Nano-Transition-Metal DeNox Catalysts. Journal of Physical Chemistry C, 2019, 123, 20314-20318.	3.1	11
110	Ab initio structure determination of kidney stone potassium quadriurate from synchrotron powder diffraction data, a 150 year problem solved. Comptes Rendus Chimie, 2016, 19, 1535-1541.	0.5	10
111	On the way of understanding the behavior of nanometer-scale metallic particles toward the adsorption of CO and NO molecules. Comptes Rendus Chimie, 2018, 21, 174-181.	0.5	10
112	Crystal size in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>ν</mml:mi></mml:math> crystalline pathologies and its clinical implication. Comptes Rendus Chimie, 2022, 25, 133-147.	0.5	10
113	Cystinuria and cystinosis are usually related to L-cystine: is this really the case for cystinosis? AAphysicochemical investigation at micrometre and nanometre scale. Comptes Rendus Chimie, 2022, 25, 489-502.	0.5	10
114	Pathologies related to abnormal deposits in dermatology: a physico-chemical approach. Comptes Rendus Chimie, 2022, 25, 445-476.	0.5	10
115	Cystinurie. ProgrÃ's En Urologie - FMC, 2012, 22, F119-F123.	0.1	9
116	Neutron diffraction as a probe for the characterization of biological entities. Comptes Rendus Chimie, 2016, 19, 1432-1438.	0.5	9
117	Solid state NMR of salivary calculi: Proline-rich salivary proteins, citrate, polysaccharides, lipids, and organic–mineral interactions. Comptes Rendus Chimie, 2016, 19, 1665-1671.	0.5	9
118	1-Methyluric Acid Nephropathy. Kidney International Reports, 2020, 5, 737-741.	0.8	9
119	Calcium Pyrophosphate Dihydrate Crystal Deposition in Gouty Tophi. Arthritis and Rheumatology, 2021, 73, 324-329.	5.6	9
120	François Garin: Pioneer work in catalysis through synchrotron radiation. Comptes Rendus Chimie, 2014, 17, 615-624.	0.5	8
121	Shedding light on the morphology of calcium oxalate monohydrate crystallites present in kidney biopsies in the case of hyperoxaluria. Comptes Rendus Chimie, 2016, 19, 1548-1557.	0.5	8
122	Duration of JJ stent in situ is critical: An ultrastructural and mechanical investigation. Comptes Rendus Chimie, 2016, 19, 1597-1604.	0.5	8
123	Biomineralization versus microcrystalline pathologies: Beauty and the beast. Comptes Rendus Chimie, 2016, 19, 1395-1403.	0.5	8
124	New insights into the presence of sodium hydrogen urate monohydrate in Randall's plaque. Comptes Rendus Chimie, 2016, 19, 1461-1469.	0.5	8
125	Delayed ileal perforation from sodium polystyreneÂsulfonate. Kidney International, 2018, 93, 1251-1252.	5.2	8
126	High frequency and wide range of human kidney papillary crystalline plugs. Urolithiasis, 2018, 46, 333-341.	2.0	8

#	Article	IF	CITATIONS
127	Urothelium proliferation is a trigger for renal crystal deposits in a murine lithogenesis model. Scientific Reports, 2018, 8, 16319.	3.3	8
128	In Search of an Efficient Complexing Agent for Oxalates and Phosphates: A Quantum Chemical Study. Nanomaterials, 2021, 11, 1763.	4.1	8
129	XAS of electronic state correlations during the reduction of the bimetallic PtRe/Al2O3system. Journal of Synchrotron Radiation, 1999, 6, 465-467.	2.4	7
130	Following the reduction under H2of supported cobalt catalysts through theLabsorption edges. Journal of Synchrotron Radiation, 1999, 6, 430-432.	2.4	7
131	First investigation on microcrystalline pathologies of kidney allografts through cellular scale physicochemical techniques. Comptes Rendus Chimie, 2016, 19, 1542-1547.	0.5	7
132	Opportunities given by density functional theory in pathological calcifications. Comptes Rendus Chimie, 2022, 25, 209-218.	0.5	7
133	Acceleration of plasma in current sheet during substorm dipolarizations in the Earth's magnetotail: Comparison of different mechanisms. Physics of Plasmas, 2019, 26, 042901.	1.9	6
134	Morbidity and long-term results of subcutaneous pyelovesical bypass in chronic ureteral obstruction. Progres En Urologie, 2021, 31, 348-356.	0.8	6
135	In situ study by XAS of the sulfuration of the Pt and PtRe/Al2O3 systems. Physica B: Condensed Matter, 1995, 208-209, 677-678.	2.7	5
136	Evolution of sulfur during pyrolysis of petroleum kerogens. Journal of Synchrotron Radiation, 1999, 6, 661-663.	2.4	5
137	New techniques on uropaleopathology. Urolithiasis, 2019, 47, 487-488.	2.0	5
138	Vitamin D and Calcium Supplementation Accelerate Vascular Calcification in a Model of Pseudoxanthoma Elasticum. International Journal of Molecular Sciences, 2022, 23, 2302.	4.1	5
139	La cystinurie et ses traitementsÂ: une approche physiopathologique. ProgrÃ's En Urologie - FMC, 2021, 31, F1-F7.	0.1	4
140	Randall's Plaques. , 2010, , 103-112.		4
141	Bimetallic catalysts: Oxidation as a function of the platinum to second metal ratios and the chlorine content. Physica B: Condensed Matter, 1989, 158, 154-155.	2.7	3
142	Physicochemistry in medicine: some selected examples. Journal of Spectral Imaging, 0, , .	0.0	3
143	Combining Solid State Physics Concepts and X-Ray Absorption Spectroscopy to Understand DeNOx Catalysis. Oil and Gas Science and Technology, 2006, 61, 677-689.	1.4	3
144	Urolithiasis: What can we learn from a Nature which dysfunctions?. Comptes Rendus Chimie, 2016, 19, 1558-1564.	0.5	2

#	Article	IF	CITATIONS
145	Heterogeneous catalysts: Evidences for intergrowth relationships between the particle and the carrier. Physica B: Condensed Matter, 1989, 158, 156-157.	2.7	1
146	Reactivity and catalysis by nanoalloys. , 2013, , 283-344.		1
147	Solid State Physics and Synchrotron Radiation Techniques to Understand Heterogeneous Catalysis. Nanostructure Science and Technology, 2004, , 427-445.	0.1	1
148	The Case Fluctuating serum creatinine and crystals in urine. Kidney International, 2020, 97, 1307-1308.	5.2	1
149	STUDY OF THE ORGANIZATION AND GENESIS OF RANDALL'S PLAQUES BY PHYSICAL TECHNIQUES OF CHARACTERIZATION. Journal of Urology, 2008, 179, 506-506.	0.4	0
150	Reply. Urology, 2015, 86, 1096.	1.0	0