
## Paul N Schofield

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4842860/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Bio-acoustic signaling; exploring the potential of sound as a mediator of low-dose radiation and stress responses in the environment. International Journal of Radiation Biology, 2022, 98, 1083-1097.                                                                   | 1.0 | 10        |
| 2  | From tangled banks to toxic bunnies; a reflection on the issues involved in developing an ecosystem<br>approach for environmental radiation protection. International Journal of Radiation Biology, 2022,<br>98, 1185-1200.                                              | 1.0 | 17        |
| 3  | The GA4GH Phenopacket schema defines a computable representation of clinical data. Nature<br>Biotechnology, 2022, 40, 817-820.                                                                                                                                           | 9.4 | 38        |
| 4  | Contribution of model organism phenotypes to the computational identification of human disease genes. DMM Disease Models and Mechanisms, 2022, 15, .                                                                                                                     | 1.2 | 5         |
| 5  | Linking common human diseases to their phenotypes; development of a resource for human phenomics. Journal of Biomedical Semantics, 2021, 12, 17.                                                                                                                         | 0.9 | 6         |
| 6  | Multi-faceted semantic clustering with text-derived phenotypes. Computers in Biology and Medicine, 2021, 138, 104904.                                                                                                                                                    | 3.9 | 3         |
| 7  | Exploring Sentiment as a Potential Indicator of Bias in Disease Ontologies. , 2021, , .                                                                                                                                                                                  |     | 0         |
| 8  | DDIEM: drug database for inborn errors of metabolism. Orphanet Journal of Rare Diseases, 2020, 15, 146.                                                                                                                                                                  | 1.2 | 9         |
| 9  | PATHBIO: an international training program for precision mouse phenotyping. Mammalian Genome, 2020, 31, 49-53.                                                                                                                                                           | 1.0 | 2         |
| 10 | Establishing the Japan-Store house of animal radiobiology experiments (J-SHARE), a large-scale<br>necropsy and histopathology archive providing international access to important radiobiology data.<br>International Journal of Radiation Biology, 2019, 95, 1372-1377. | 1.0 | 25        |
| 11 | Hyaline Arteriolosclerosis in 30 Strains of Aged Inbred Mice. Veterinary Pathology, 2019, 56, 799-806.                                                                                                                                                                   | 0.8 | 3         |
| 12 | FAIRing the radiation science commons. BIO Web of Conferences, 2019, 14, 08002.                                                                                                                                                                                          | 0.1 | 0         |
| 13 | PathoPhenoDB, linking human pathogens to their phenotypes in support of infectious disease research. Scientific Data, 2019, 6, 79.                                                                                                                                       | 2.4 | 13        |
| 14 | Big data in radiation biology and epidemiology; an overview of the historical and contemporary<br>landscape of data and biomaterial archives. International Journal of Radiation Biology, 2019, 95,<br>861-878.                                                          | 1.0 | 16        |
| 15 | Quantitative evaluation of ontology design patterns for combining pathology and anatomy ontologies. Scientific Reports, 2019, 9, 4025.                                                                                                                                   | 1.6 | 13        |
| 16 | SURVEY ON DATA MANAGEMENT IN RADIATION PROTECTION RESEARCH. Radiation Protection Dosimetry, 2019, 183, 233-236.                                                                                                                                                          | 0.4 | 3         |
| 17 | DeepPVP: phenotype-based prioritization of causative variants using deep learning. BMC<br>Bioinformatics, 2019, 20, 65.                                                                                                                                                  | 1.2 | 49        |
| 18 | Ontology-based prediction of cancer driver genes. Scientific Reports, 2019, 9, 17405.                                                                                                                                                                                    | 1.6 | 16        |

| #  | Article                                                                                                                                                                | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Nail abnormalities identified in an ageing study of 30 inbred mouse strains. Experimental Dermatology, 2019, 28, 383-390.                                              | 1.4 | 8         |
| 20 | When a duck is not a duck; a new interdisciplinary synthesis for environmental radiation protection.<br>Environmental Research, 2018, 162, 318-324.                    | 3.7 | 15        |
| 21 | Evolving paradigms for the biological response to low dose ionizing radiation; the role of epigenetics. International Journal of Radiation Biology, 2018, 94, 769-781. | 1.0 | 28        |
| 22 | The anatomy of phenotype ontologies: principles, properties and applications. Briefings in Bioinformatics, 2018, 19, 1008-1021.                                        | 3.2 | 66        |
| 23 | Living inside the box: environmental effects on mouse models of human disease. DMM Disease Models and Mechanisms, 2018, 11, .                                          | 1.2 | 25        |
| 24 | OligoPVP: Phenotype-driven analysis of individual genomic information to prioritize oligogenic disease variants. Scientific Reports, 2018, 8, 14681.                   | 1.6 | 8         |
| 25 | A Review of Current Standards and the Evolution of Histopathology Nomenclature for Laboratory<br>Animals. ILAR Journal, 2018, 59, 29-39.                               | 1.8 | 15        |
| 26 | Ontology-based validation and identification of regulatory phenotypes. Bioinformatics, 2018, 34, i857-i865.                                                            | 1.8 | 5         |
| 27 | Reproducibility of histopathological findings in experimental pathology of the mouse: a sorry tail. Lab<br>Animal, 2017, 46, 146-151.                                  | 0.2 | 36        |
| 28 | Systematic screening for skin, hair, and nail abnormalities in a large-scale knockout mouse program.<br>PLoS ONE, 2017, 12, e0180682.                                  | 1.1 | 14        |
| 29 | Semantic prioritization of novel causative genomic variants. PLoS Computational Biology, 2017, 13, e1005500.                                                           | 1.5 | 28        |
| 30 | Integrating phenotype ontologies with PhenomeNET. Journal of Biomedical Semantics, 2017, 8, 58.                                                                        | 0.9 | 28        |
| 31 | The Informatics of Developmental Phenotypes. , 2016, , 307-318.                                                                                                        |     | 3         |
| 32 | Show and tell: disclosure and data sharing in experimental pathology. DMM Disease Models and Mechanisms, 2016, 9, 601-605.                                             | 1.2 | 8         |
| 33 | DermO; an ontology for the description of dermatologic disease. Journal of Biomedical Semantics, 2016, 7, 38.                                                          | 0.9 | 8         |
| 34 | Datamining with Ontologies. Methods in Molecular Biology, 2016, 1415, 385-397.                                                                                         | 0.4 | 2         |
| 35 | Experiences with Aber-OWL, an Ontology Repository with OWL EL Reasoning. Lecture Notes in Computer Science, 2016, , 81-86.                                             | 1.0 | 0         |
| 36 | Mouse genome-wide association study identifies polymorphisms on chromosomes 4, 11, and 15 for age-related cardiac fibrosis. Mammalian Genome, 2016, 27, 179-190.       | 1.0 | 13        |

| #  | Article                                                                                                                                                                         | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Living Long and Well: Prospects for a Personalized Approach to the Medicine of Ageing. Gerontology, 2016, 62, 409-416.                                                          | 1.4 | 11        |
| 38 | Genome wide conditional mouse knockout resources. Drug Discovery Today: Disease Models, 2016, 20,<br>3-12.                                                                      | 1.2 | 3         |
| 39 | Using AberOWL for fast and scalable reasoning over BioPortal ontologies. Journal of Biomedical Semantics, 2016, 7, 49.                                                          | 0.9 | 14        |
| 40 | Genetic determinants of fibro-osseous lesions in aged inbred mice. Experimental and Molecular<br>Pathology, 2016, 100, 92-100.                                                  | 0.9 | 10        |
| 41 | The Human Phenotype Ontology: Semantic Unification of Common and Rare Disease. American Journal of Human Genetics, 2015, 97, 111-124.                                           | 2.6 | 203       |
| 42 | Dsprul: A spontaneous mouse mutation in desmoplakin as a model of Carvajal-Huerta syndrome.<br>Experimental and Molecular Pathology, 2015, 98, 164-172.                         | 0.9 | 13        |
| 43 | Best behaviour? Ontologies and the formal description of animal behaviour. Mammalian Genome, 2015, 26, 540-547.                                                                 | 1.0 | 4         |
| 44 | Analysis of the human diseasome using phenotype similarity between common, genetic and infectious<br>diseases. Scientific Reports, 2015, 5, 10888.                              | 1.6 | 85        |
| 45 | Aber-OWL: a framework for ontology-based data access in biology. BMC Bioinformatics, 2015, 16, 26.                                                                              | 1.2 | 68        |
| 46 | Similarity-based search of model organism, disease and drug effect phenotypes. Journal of Biomedical<br>Semantics, 2015, 6, 6.                                                  | 0.9 | 8         |
| 47 | The role of ontologies in biological and biomedical research: a functional perspective. Briefings in<br>Bioinformatics, 2015, 16, 1069-1080.                                    | 3.2 | 199       |
| 48 | Excavating the Genome: Large-Scale Mutagenesis Screening for the Discovery of New Mouse Models.<br>Journal of Investigative Dermatology Symposium Proceedings, 2015, 17, 27-29. | 0.8 | 2         |
| 49 | Mouse model phenotypes provide information about human drug targets. Bioinformatics, 2014, 30, 719-725.                                                                         | 1.8 | 38        |
| 50 | Inbred mouse strains reveal biomarkers that are proâ€longevity, antilongevity or role switching. Aging Cell, 2014, 13, 729-738.                                                 | 3.0 | 17        |
| 51 | Identifying mouse models for skin cancer using the Mouse Tumor Biology Database. Experimental Dermatology, 2014, 23, 761-763.                                                   | 1.4 | 7         |
| 52 | Deletions of chromosomal regulatory boundaries are associated with congenital disease. Genome<br>Biology, 2014, 15, 423.                                                        | 3.8 | 144       |
| 53 | Analyzing gene expression data in mice with the Neuro Behavior Ontology. Mammalian Genome, 2014, 25, 32-40.                                                                     | 1.0 | 19        |
| 54 | The Human Phenotype Ontology project: linking molecular biology and disease through phenotype<br>data. Nucleic Acids Research, 2014, 42, D966-D974.                             | 6.5 | 698       |

| #  | Article                                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | The Cinderella Effect: Searching for the Best Fit between Mouse Models and Human Diseases. Journal of Investigative Dermatology, 2013, 133, 2509-2513.                                                                                             | 0.3 | 15        |
| 56 | A decadal view of biodiversity informatics: challenges and priorities. BMC Ecology, 2013, 13, 16.                                                                                                                                                  | 3.0 | 110       |
| 57 | The mouse pathology ontology, MPATH; structure and applications. Journal of Biomedical Semantics, 2013, 4, 18.                                                                                                                                     | 0.9 | 32        |
| 58 | An integrative, translational approach to understanding rare and orphan genetically based diseases.<br>Interface Focus, 2013, 3, 20120055.                                                                                                         | 1.5 | 16        |
| 59 | Phenotypic overlap in the contribution of individual genes to CNV pathogenicity revealed by<br>cross-species computational analysis of single-gene mutations in humans, mice and zebrafish. DMM<br>Disease Models and Mechanisms, 2013, 6, 358-72. | 1.2 | 43        |
| 60 | Systematic Analysis of Experimental Phenotype Data Reveals Gene Functions. PLoS ONE, 2013, 8, e60847.                                                                                                                                              | 1.1 | 19        |
| 61 | Construction and accessibility of a cross-species phenotype ontology along with gene annotations for biomedical research. F1000Research, 2013, 2, 30.                                                                                              | 0.8 | 72        |
| 62 | Construction and accessibility of a cross-species phenotype ontology along with gene annotations for biomedical research. F1000Research, 2013, 2, 30.                                                                                              | 0.8 | 64        |
| 63 | Exploring the elephant: histopathology in high-throughput phenotyping of mutant mice. DMM Disease<br>Models and Mechanisms, 2012, 5, 19-25.                                                                                                        | 1.2 | 32        |
| 64 | The Units Ontology: a tool for integrating units of measurement in science. Database: the Journal of<br>Biological Databases and Curation, 2012, 2012, bas033-bas033.                                                                              | 1.4 | 78        |
| 65 | Computational tools for comparative phenomics: the role and promise of ontologies. Mammalian Genome, 2012, 23, 669-679.                                                                                                                            | 1.0 | 19        |
| 66 | The mammalian gene function resource: the international knockout mouse consortium. Mammalian<br>Genome, 2012, 23, 580-586.                                                                                                                         | 1.0 | 292       |
| 67 | Diversity of Spontaneous Neoplasms in Commonly Used Inbred Strains of Laboratory Mice. , 2012, , 411-426.                                                                                                                                          |     | 6         |
| 68 | The Neurobehavior Ontology. International Review of Neurobiology, 2012, 103, 69-87.                                                                                                                                                                | 0.9 | 31        |
| 69 | Mouse genetic and phenotypic resources for human genetics. Human Mutation, 2012, 33, 826-836.                                                                                                                                                      | 1.1 | 58        |
| 70 | Integration of global resources for human genetic variation and disease. Human Mutation, 2012, 33, 813-816.                                                                                                                                        | 1.1 | 9         |
| 71 | MouseFinder: Candidate disease genes from mouse phenotype data. Human Mutation, 2012, 33, 858-866.                                                                                                                                                 | 1.1 | 53        |
| 72 | Linking PharmGKB to phenotype studies and animal models of disease for drug repurposing. Pacific<br>Symposium on Biocomputing Pacific Symposium on Biocomputing, 2012, , 388-99.                                                                   | 0.7 | 18        |

| #  | Article                                                                                                                                                                                         | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | LINKING PHARMGKB TO PHENOTYPE STUDIES AND ANIMAL MODELS OF DISEASE FOR DRUG REPURPOSING. , 2011, , .                                                                                            |      | 9         |
| 74 | The mouse as a model for understanding chronic diseases of aging: the histopathologic basis of aging in inbred mice. Pathobiology of Aging & Age Related Diseases, 2011, 1, 7179.               | 1.1  | 78        |
| 75 | Interoperability between Biomedical Ontologies through Relation Expansion, Upper-Level Ontologies and Automatic Reasoning. PLoS ONE, 2011, 6, e22006.                                           | 1.1  | 38        |
| 76 | Anatomy ontologies and potential users: bridging the gap. Journal of Biomedical Semantics, 2011, 2, S3.                                                                                         | 0.9  | 6         |
| 77 | Improving ontologies by automatic reasoning and evaluation of logical definitions. BMC Bioinformatics, 2011, 12, 418.                                                                           | 1.2  | 29        |
| 78 | PhenomeNET: a whole-phenome approach to disease gene discovery. Nucleic Acids Research, 2011, 39, e119-e119.                                                                                    | 6.5  | 195       |
| 79 | Towards BioDBcore: a community-defined information specification for biological databases.<br>Database: the Journal of Biological Databases and Curation, 2011, 2011, baq027-baq027.            | 1.4  | 30        |
| 80 | Towards BioDBcore: a community-defined information specification for biological databases. Nucleic Acids Research, 2011, 39, D7-D10.                                                            | 6.5  | 32        |
| 81 | New approaches to the representation and analysis of phenotype knowledge in human diseases and their animal models. Briefings in Functional Genomics, 2011, 10, 258-265.                        | 1.3  | 18        |
| 82 | A common layer of interoperability for biomedical ontologies based on OWL EL. Bioinformatics, 2011, 27, 1001-1008.                                                                              | 1.8  | 35        |
| 83 | Pathology of the Laboratory Mouse. Toxicologic Pathology, 2011, 39, 559-562.                                                                                                                    | 0.9  | 17        |
| 84 | Towards the integration of mouse databases - definition and implementation of solutions to two use-cases in mouse functional genomics. BMC Research Notes, 2010, 3, 16.                         | 0.6  | 3         |
| 85 | Archiving lessons from radiobiology. Nature, 2010, 468, 634-634.                                                                                                                                | 13.7 | 7         |
| 86 | Mouse Resource Browsera database of mouse databases. Database: the Journal of Biological<br>Databases and Curation, 2010, 2010, baq010-baq010.                                                  | 1.4  | 3         |
| 87 | Finding and sharing: new approaches to registries of databases and services for the biomedical sciences. Database: the Journal of Biological Databases and Curation, 2010, 2010, baq014-baq014. | 1.4  | 12        |
| 88 | XGAP: a uniform and extensible data model and software platform for genotype and phenotype experiments. Genome Biology, 2010, 11, R27.                                                          | 13.9 | 20        |
| 89 | Sustaining the Data and Bioresource Commons. Science, 2010, 330, 592-593.                                                                                                                       | 6.0  | 52        |
| 90 | Phenotype ontologies for mouse and man: bridging the semantic gap. DMM Disease Models and Mechanisms, 2010, 3, 281-289.                                                                         | 1.2  | 39        |

| #   | Article                                                                                                                                                                                    | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Entity/quality-based logical definitions for the human skeletal phenome using PATO. , 2009, 2009, 7069-72.                                                                                 |      | 67        |
| 92  | Models for financial sustainability of biological databases and resources. Database: the Journal of<br>Biological Databases and Curation, 2009, 2009, bap017-bap017.                       | 1.4  | 27        |
| 93  | One Medicine, One Pathology, and the One Health concept. Journal of the American Veterinary Medical Association, 2009, 234, 1530-1531.                                                     | 0.2  | 26        |
| 94  | Mouse, man, and meaning: bridging the semantics of mouse phenotype and human disease. Mammalian<br>Genome, 2009, 20, 457-461.                                                              | 1.0  | 21        |
| 95  | A Mouse by Any Other Name …. Journal of Investigative Dermatology, 2009, 129, 1599-1601.                                                                                                   | 0.3  | 12        |
| 96  | PRIME importance of pathology expertise. Nature Biotechnology, 2009, 27, 24-25.                                                                                                            | 9.4  | 17        |
| 97  | Prepublication data sharing. Nature, 2009, 461, 168-170.                                                                                                                                   | 13.7 | 243       |
| 98  | Post-publication sharing of data and tools. Nature, 2009, 461, 171-173.                                                                                                                    | 13.7 | 142       |
| 99  | Integrating mouse anatomy and pathology ontologies into a phenotyping database: Tools for data capture and training. Mammalian Genome, 2008, 19, 413-419.                                  | 1.0  | 42        |
| 100 | Abnormal skeletal and cardiac development, cardiomyopathy, muscle atrophy and cataracts in mice with a targeted disruption of the Nov (Ccn3) gene. BMC Developmental Biology, 2008, 8, 18. | 2.1  | 76        |
| 101 | Towards a Disease Ontology. Computational Biology, 2008, , 119-130.                                                                                                                        | 0.1  | 3         |
| 102 | The Mouse Resource Browser (MRB) - A near-complete registry of mouse resources. , 2008, , .                                                                                                |      | 1         |
| 103 | Digital preservation - financial sustainability of biological data and material resources. , 2008, , .                                                                                     |      | 1         |
| 104 | CASIMIR: Coordination and Sustainability of International Mouse Informatics Resources. , 2008, , .                                                                                         |      | 7         |
| 105 | Solutions for data integration in functional genomics: a critical assessment and case study. Briefings in Bioinformatics, 2008, 9, 532-544.                                                | 3.2  | 23        |
| 106 | Towards dynamic database infrastructures for mouse genetics. , 2008, , .                                                                                                                   |      | 1         |
| 107 | STATE COMPLEXITY OF ADDITIVE WEIGHTED FINITE AUTOMATA. International Journal of Foundations of Computer Science, 2007, 18, 1407-1416.                                                      | 0.8  | 16        |
| 108 | Integration of mouse phenome data resources. Mammalian Genome, 2007, 18, 157-163.                                                                                                          | 1.0  | 44        |

| #   | Article                                                                                                                                                                                                            | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Radiation, Oxidative Stress and Senescence; The Vascular Endothelial Cell as a Common Target. NATO Science for Peace and Security Series C: Environmental Security, 2007, , 325-334.                               | 0.1 | 5         |
| 110 | Radiation-induced genomic instability is associated with DNA methylation changes in cultured human<br>keratinocytes. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2006, 597,<br>87-97. | 0.4 | 78        |
| 111 | Molecular subtypes and phenotypic expression of Beckwith–Wiedemann syndrome. European Journal of Human Genetics, 2005, 13, 1025-1032.                                                                              | 1.4 | 284       |
| 112 | Pathbase: a database of mutant mouse pathology. Nucleic Acids Research, 2004, 32, 512D-515.                                                                                                                        | 6.5 | 49        |
| 113 | Pathbase: a new reference resource and database for laboratory mouse pathology. Radiation<br>Protection Dosimetry, 2004, 112, 525-528.                                                                             | 0.4 | 21        |
| 114 | Frequent RASSF1A tumour suppressor gene promoter methylation in Wilms' tumour and colorectal cancer. Oncogene, 2002, 21, 7277-7282.                                                                                | 2.6 | 82        |
| 115 | Genomic imprinting and cancer; new paradigms in the genetics of neoplasia. Toxicology Letters, 2001, 120, 151-160.                                                                                                 | 0.4 | 41        |
| 116 | Altered Expression of novH Is Associated with Human Adrenocortical Tumorigenesis. Journal of Clinical Endocrinology and Metabolism, 2001, 86, 3929-3940.                                                           | 1.8 | 40        |
| 117 | Altered Expression of novH Is Associated with Human Adrenocortical Tumorigenesis. Journal of<br>Clinical Endocrinology and Metabolism, 2001, 86, 3929-3940.                                                        | 1.8 | 15        |
| 118 | Molecular control of muscle development: specification, determination and differentiation in the amniote embryo. Seminars in Fetal and Neonatal Medicine, 1999, 4, 79-91.                                          | 2.8 | 0         |
| 119 | Imprinting of IGF2 and H19: lack of reciprocity in sporadic Beckwith- Wiedemann syndrome. Human<br>Molecular Genetics, 1997, 6, 1543-1548.                                                                         | 1.4 | 100       |
| 120 | Genomic Structure and Chromosomal Mapping of the MousenovGene. Genomics, 1996, 38, 425-428.                                                                                                                        | 1.3 | 23        |
| 121 | The Effects of Fibroblast Growth Factors in Long-Term Primary Culture of Dystrophic (MDX) Mouse<br>Muscle Myoblasts. Experimental Cell Research, 1994, 210, 86-93.                                                 | 1.2 | 19        |
| 122 | Developmental regulation of insulin like growth factor II expression in the horse Cell Biology<br>International, 1993, 17, 603-608.                                                                                | 1.4 | 5         |
| 123 | IGF2 is parentally imprinted during human embryogenesis and in the Beckwith–Wiedemann syndrome.<br>Nature Genetics, 1993, 4, 94-97.                                                                                | 9.4 | 292       |
| 124 | GROWH FACTORS IN EARLY EMBRYOGENESIS. Reproduction in Domestic Animals, 1993, 28, 176-181.                                                                                                                         | 0.6 | 3         |
| 125 | Insulin-like growth factor (IGF)-I, -II and IGF binding protein-2 (IGFBP-2) in the plasma of children with<br>Wilms' tumour. European Journal of Cancer, 1993, 29, 1973-1977.                                      | 1.3 | 53        |
| 126 | Concentration-dependent modulation of basic fibroblast growth factor action on multiplication and locomotion of human teratocarcinoma cells. FEBS Letters, 1992, 298, 154-158.                                     | 1.3 | 15        |

| #   | Article                                                                                                                                                                  | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | The role of insulin-like growth factors and IGF-binding proteins in the physiological and pathological processes of the kidney. Vigiliae Christianae, 1992, 62, 207-220. | 0.1  | 28        |
| 128 | Differentiation associated modulation of K-FGF expression in a human teratocarcinoma cell line and in primary germ cell tumours. FEBS Letters, 1991, 280, 8-10.          | 1.3  | 11        |
| 129 | Growth Factor Synthesis By a Human Teratocarcinoma Cell Line: Implications for Autocrine Growth in the Human Embryo?. , 1990, , 49-59.                                   |      | 4         |
| 130 | Regulation and specificity of glucose-stimulated insulin gene expression in human islets of<br>Langerhans. FEBS Letters, 1987, 223, 131-137.                             | 1.3  | 40        |
| 131 | Glucose regulates preproinsulin messenger RNA levels in a clonal cell line of simian virus<br>40-transformed B cells. FEBS Letters, 1987, 213, 149-154.                  | 1.3  | 53        |
| 132 | Patterns, puzzles and paradigms: the riddle of the homeobox. Trends in Neurosciences, 1987, 10, 3-6.                                                                     | 4.2  | 25        |
| 133 | A mouse homoeo box gene is expressed during embryogenesis and in adult kidney. Nature, 1985, 317, 745-748.                                                               | 13.7 | 128       |
| 134 | How is the mouse segmented?. Trends in Genetics, 1985, 1, 67-74.                                                                                                         | 2.9  | 56        |