## **Chuangang Fan**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/484259/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Lysine-assisted hydrothermal synthesis of urchin-like ordered arrays of mesoporous Co(OH)2<br>nanowires and their application in electrochemical capacitors. Journal of Materials Chemistry, 2010,<br>20, 10809.                       | 6.7  | 115       |
| 2  | Synthesis of Zinc Bismuthate Nanorods and Electrochemical Performance for Sensitive Determination of L-Cysteine. Journal of the Electrochemical Society, 2016, 163, H1-H8.                                                             | 2.9  | 49        |
| 3  | Low temperature growth and characterizations of single crystalline CuGeO3 nanowires.<br>CrystEngComm, 2009, 11, 1696.                                                                                                                  | 2.6  | 41        |
| 4  | Structure, morphology, and microwave dielectric properties of SmAlO3 synthesized by stearic acid route. Journal of Advanced Ceramics, 2020, 9, 558-566.                                                                                | 17.4 | 34        |
| 5  | Synthesis and characterization of manganese vanadate nanorods as glassy carbon electrode modified materials for the determination of l-cysteine. CrystEngComm, 2013, 15, 1729.                                                         | 2.6  | 29        |
| 6  | Formation process of calcium vanadate nanorods and their electrochemical sensing properties.<br>Journal of Materials Research, 2012, 27, 2391-2400.                                                                                    | 2.6  | 28        |
| 7  | Electrochemical determination of L-cysteine using polyaniline/CuGeO3 nanowire modified electrode.<br>Russian Journal of Electrochemistry, 2014, 50, 458-467.                                                                           | 0.9  | 23        |
| 8  | Synthesis of Li-doped bismuth oxide nanoplates, Co nanoparticles modification, and good<br>photocatalytic activity toward organic pollutants. Toxicological and Environmental Chemistry, 2020,<br>102, 356-385.                        | 1.2  | 19        |
| 9  | Electrochemical Behaviors of Ascorbic Acid at CuGeO3/Polyaniline Nanowire Modified Glassy Carbon<br>Electrode. Journal of the Electrochemical Society, 2012, 159, G107-G111.                                                           | 2.9  | 18        |
| 10 | Electrochemical behavior of tartaric acid at CuGeO3 nanowire modified glassy carbon electrode.<br>Journal of Solid State Electrochemistry, 2012, 16, 2243-2249.                                                                        | 2.5  | 16        |
| 11 | Formation of Ba bismuthate nanobelts and sensitive electrochemical determination of tartaric acid.<br>Materials Research Express, 2017, 4, 075047.                                                                                     | 1.6  | 15        |
| 12 | Bismuth Tellurate Nanospheres and Electrochemical Behaviors of L-Cysteine at the Nanospheres<br>Modified Electrode. Russian Journal of Electrochemistry, 2018, 54, 84-91.                                                              | 0.9  | 15        |
| 13 | Synthesis and characterizations of calcium germanate nanowires. CrystEngComm, 2011, 13, 4658.                                                                                                                                          | 2.6  | 14        |
| 14 | Largeâ€scale synthesis of submicron gallium oxide hydrate rods and their optical and electrochemical properties. Crystal Research and Technology, 2010, 45, 1087-1093.                                                                 | 1.3  | 11        |
| 15 | Flame retardant rigid polyurethane foam composites based on microencapsulated ammonium<br>polyphosphate and microencapsulated expanded graphite. Journal of Macromolecular Science - Pure<br>and Applied Chemistry, 2021, 58, 659-668. | 2.2  | 11        |
| 16 | Graphene/zinc bismuthate nanorods composites and their electrochemical sensing performance for ascorbic acid. Fullerenes Nanotubes and Carbon Nanostructures, 2019, 27, 58-64.                                                         | 2.1  | 10        |
| 17 | Facile Cetyltrimethylammonium Bromide (CTAB)-assisted Synthesis of Calcium Bismuthate Nanoflakes with Solar Light Photocatalytic Performance. Current Nanoscience, 2021, 17, 315-326.                                                  | 1.2  | 9         |
| 18 | Synthesis and Electrochemical Properties of Ag2S and Ag2S/Cu2S Crystals. E-Journal of Surface Science and Nanotechnology, 2010, 8, 384-387.                                                                                            | 0.4  | 7         |

Chuangang Fan

| #  | Article                                                                                                                                                                                               | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Preparation of copper germanate nanowires with good electrochemical sensing properties. Crystal<br>Research and Technology, 2011, 46, 103-112.                                                        | 1.3 | 7         |
| 20 | Controllable synthesis of BiPr composite oxide nanowires electrocatalyst for sensitive L-cysteine sensing properties. Nanotechnology, 2022, 33, 345704.                                               | 2.6 | 7         |
| 21 | CuGeO <sub>3</sub> /polyaniline nanowires and their electrochemical responses for tartaric acid.<br>Measurement Science and Technology, 2012, 23, 115701.                                             | 2.6 | 6         |
| 22 | Formation mechanism of manganese vanadate microtubes and their electrochemical sensing properties. International Journal of Materials Research, 2013, 104, 1267-1273.                                 | 0.3 | 6         |
| 23 | Synthesis and microwave dielectric properties of Ca0.6La0.267TiO3 nanocrystalline powders by sol–gel method. Journal of Sol-Gel Science and Technology, 2011, 59, 525-531.                            | 2.4 | 4         |
| 24 | <i>In-situ</i> synthesis of polynaphthylamine/graphene composites for the electrochemical sensing of benzoic acid. Materials Research Express, 2019, 6, 015053.                                       | 1.6 | 4         |
| 25 | Preparation and characterisation of environmental-friendly ceramsites from iron ore tailings and sludge. International Journal of Sustainable Engineering, 2021, 14, 884-892.                         | 3.5 | 4         |
| 26 | Microstructure and mechanical performance of acicular mullite-reinforced porous self-bonded ceramics. Journal of Materials Science, 2020, 55, 9322-9329.                                              | 3.7 | 3         |
| 27 | A Facile Route to Synthesize DyF <sub>3</sub> /Bi <sub>2</sub> O <sub>3</sub> Nanowires and Sensitive<br>L-cysteine Sensing Properties. Journal of the Electrochemical Society, 2022, 169, 076504.    | 2.9 | 3         |
| 28 | Low temperature synthesis of CuGeO <sub>3</sub> nanoflowers from n-heptane solvent.<br>International Journal of Materials Research, 2011, 102, 1391-1396.                                             | 0.3 | 2         |
| 29 | Facile Synthesis of Polyaniline/Bismuth Nickelate Nanorod Composites for Sensitive Tartaric Acid<br>Detection. Surface Engineering and Applied Electrochemistry, 2019, 55, 335-341.                   | 0.8 | 2         |
| 30 | A facile chemical route to prepare Nd[(Zn0.7Co0.3)0.5Ti0.5]O3 powders and microwave dielectric materials. Journal of Sol-Gel Science and Technology, 2020, 95, 375-383.                               | 2.4 | 2         |
| 31 | Dependence of growth conditions on copper germanate nanowires and their electrochemical characteristics. Materials Science-Poland, 2011, 29, 241-247.                                                 | 1.0 | 1         |
| 32 | Mechanical Performance of the Phosphogypsum Baking-free Bricks. Current Materials Science, 2021, 14,<br>131-140.                                                                                      | 0.4 | 1         |
| 33 | Preparation and Characterization of Lightweight Wall Materials Based on a Binder Mainly Including<br>Phosphor-gypsum. Journal of Advanced Concrete Technology, 2020, 18, 689-698.                     | 1.8 | 1         |
| 34 | Effects of TiO2 on the Microstructure of Synthesized Elongated Mullite. InterCeram: International<br>Ceramic Review, 2018, 67, 30-35.                                                                 | 0.2 | 0         |
| 35 | Ethylenediaminetetraacetic Acid Assisted Synthesis of Bismuth Oxide/Indium Oxide Microspheres with Good Photocatalytic Performance. E-Journal of Surface Science and Nanotechnology, 2021, 19, 24-31. | 0.4 | 0         |
| 36 | Fabrication of Baking-free Bricks from Iron Ore Tailings. Current Materials Science, 2021, 13, 97-110.                                                                                                | 0.4 | 0         |

| #  | Article                                                                                                       | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Utilizing Iron Tailing, Sludge and Fly Ash to Prepare Ceramsites. Current Materials Science, 2020, 13, 16-25. | 0.4 | 0         |