
Suzanne M Reichman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4842286/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Heavy metals in Australian grown and imported rice and vegetables on sale in Australia: Health hazard. Ecotoxicology and Environmental Safety, 2014, 100, 53-60.	2.9	195
2	Environmental Fate of Fungicides in Surface Waters of a Horticultural-Production Catchment in Southeastern Australia. Archives of Environmental Contamination and Toxicology, 2012, 62, 380-390.	2.1	137
3	Metal accumulation in roadside soil in Melbourne, Australia: Effect ofÂroad age, traffic density and vehicular speed. Environmental Pollution, 2016, 208, 102-109.	3.7	133
4	Case studies and evidence-based approaches to addressing urban soil lead contamination. Applied Geochemistry, 2017, 83, 14-30.	1.4	106
5	The potential use of the legume–rhizobium symbiosis for the remediation of arsenic contaminated sites. Soil Biology and Biochemistry, 2007, 39, 2587-2593.	4.2	100
6	Per- and polyfluoroalkyl substances (PFAS) in livestock and game species: A review. Science of the Total Environment, 2021, 774, 144795.	3.9	95
7	Arsenic Speciation in Australian-Grown and Imported Rice on Sale in Australia: Implications for Human Health Risk. Journal of Agricultural and Food Chemistry, 2014, 62, 6016-6024.	2.4	78
8	Environmental Risks of Fungicides Used in Horticultural Production Systems. , 0, , .		58
9	Alleviation of Cu and Pb Rhizotoxicities in Cowpea (<i>Vigna unguiculata</i>) as Related to Ion Activities at Root-Cell Plasma Membrane Surface. Environmental Science & Technology, 2011, 45, 4966-4973.	4.6	57
10	Phosphorusâ€Rich Biochars Can Transform Lead in an Urban Contaminated Soil. Journal of Environmental Quality, 2019, 48, 1091-1099.	1.0	53
11	Assessment of soil metal concentrations in residential and community vegetable gardens in Melbourne, Australia. Chemosphere, 2018, 199, 303-311.	4.2	52
12	Evaluation of environmental and anthropogenic influences on ambient background metal and metalloid concentrations in soil. Science of the Total Environment, 2018, 624, 599-610.	3.9	51
13	Review of the interactions between vehicular emitted potentially toxic elements, roadside soils, and associated biota. Chemosphere, 2021, 263, 128135.	4.2	51
14	Legacy and emerging per- and polyfluoroalkyl substances (PFASs) in Australian biosolids. Chemosphere, 2021, 270, 129143.	4.2	47
15	Evaluation of soil metal bioavailability estimates using two plant species (L.Âperenne and T.Âaestivum) grown in a range of agricultural soils treated with biosolids and metal salts. Environmental Pollution, 2011, 159, 1523-1535.	3.7	45
16	Probing the effects of light and temperature on diurnal rhythms of phytosiderophore release in wheat. New Phytologist, 2007, 174, 101-108.	3.5	36
17	Environmental and anthropogenic influences on ambient background concentrations of fluoride in soil. Environmental Pollution, 2018, 242, 1838-1849.	3.7	36
18	Hyperaccumulators and Herbivores—A Bayesian Meta-Analysis of Feeding Choice Trials. Journal of Chemical Ecology, 2009, 35, 289-296.	0.9	35

SUZANNE M REICHMAN

#	Article	IF	CITATIONS
19	Revisiting the Metal-Binding Chemistry of Nicotianamine and 2′-Deoxymugineic Acid. Implications for Iron Nutrition in Strategy II Plants. Plant Physiology, 2002, 129, 1435-1438.	2.3	33
20	Probing the plant growth-promoting and heavy metal tolerance characteristics of Bradyrhizobium japonicum CB1809. European Journal of Soil Biology, 2014, 63, 7-13.	1.4	33
21	Nitrogen contamination and bioremediation in groundwater and the environment: A review. Earth-Science Reviews, 2021, 222, 103816.	4.0	29
22	Separating multiple, shortâ€ŧerm, deleterious effects of saline solutions on the growth of cowpea seedlings. New Phytologist, 2011, 189, 1110-1121.	3.5	28
23	Effects of copper fungicide residues on the microbial function of vineyard soils. Environmental Science and Pollution Research, 2013, 20, 1574-1585.	2.7	28
24	Title is missing!. Plant and Soil, 2001, 235, 151-158.	1.8	27
25	Phytoremediation of Toxic Metals in Soils and Wetlands: Concepts and Applications. , 2016, , 161-195.		26
26	A screen of some native Australian flora and exotic agricultural species for their potential application in cyanide-induced phytoextraction of gold. Minerals Engineering, 2007, 20, 1327-1330.	1.8	25
27	Seedling responses of four Australian tree species to toxic concentrations of manganese in solution culture. Plant and Soil, 2004, 258, 341-350.	1.8	24
28	Arsenic Concentrations and Dietary Exposure in Rice-Based Infant Food in Australia. International Journal of Environmental Research and Public Health, 2020, 17, 415.	1.2	24
29	Inter-Regional Variability in Environmental Availability of Fungicide Derived Copper in Vineyard Soils: An Australian Case Study. Journal of Agricultural and Food Chemistry, 2010, 58, 449-457.	2.4	23
30	Production of the forage halophyte <i>Atriplex amnicola</i> in metal ontaminated soils. Soil Use and Management, 2016, 32, 350-356.	2.6	22
31	Impacts of standard and â€~low environmental impact' greywater irrigation on soil and plant nutrients and ecology. Applied Soil Ecology, 2013, 72, 195-202.	2.1	21
32	Metal complexation by phytosiderophores in the rhizosphere. , 2005, , 129-156.		20
33	Critical evaluation of three indirect assays for quantifying phytosiderophores released by the roots of Poaceae. European Journal of Soil Science, 2007, 58, 844-853.	1.8	20
34	Assessment of ambient background concentrations of elements in soil using combined survey and open-source data. Science of the Total Environment, 2017, 580, 1410-1420.	3.9	18
35	Soil Pollution and Remediation. International Journal of Environmental Research and Public Health, 2018, 15, 1657.	1.2	18
36	Geochemical indices and regression tree models for estimation of ambient background concentrations of copper, chromium, nickel and zinc in soil. Chemosphere, 2018, 210, 193-203.	4.2	18

SUZANNE M REICHMAN

#	Article	IF	CITATIONS
37	The guard cell ionome: Understanding the role of ions in guard cell functions. Progress in Biophysics and Molecular Biology, 2019, 146, 50-62.	1.4	18
38	The effects of temperature and salinity on Acacia harpophylla (brigalow) (Mimosaceae) germination. Rangeland Journal, 2006, 28, 175.	0.4	17
39	Responses of Four Australian Tree Species to Toxic Concentrations of Copper in Solution Culture. Journal of Plant Nutrition, 2006, 29, 1127-1141.	0.9	17
40	The Effects of Copper Hydroxide, Captan and Trifloxystrobin Fungicides on Soil Phosphomonoesterase and Urease Activity. Water, Air, and Soil Pollution, 2013, 224, 1.	1.1	17
41	Vegetation response of Australian native grass species redgrass (Bothriochloa macra (Steudel) S.T.) Tj ETQq1 1 G gold mine tailings: A glasshouse study. Minerals Engineering, 2014, 56, 61-69.).784314 ı 1.8	gBT /Overloc 15
42	Quantifying factors related to urban metal contamination in vegetable garden soils of the west and north of Melbourne, Australia. Environmental Pollution, 2019, 251, 193-202.	3.7	15
43	Evaluation of methods for managing censored results when calculating the geometric mean. Chemosphere, 2018, 191, 412-416.	4.2	13
44	Immobilisation of geogenic arsenic and vanadium in iron-rich sediments and iron stone deposits. Science of the Total Environment, 2019, 654, 1072-1081.	3.9	12
45	Examining the integrity of soil metal bioavailability assays in the presence of organic amendments to metalâ€spiked soils. Soil Use and Management, 2012, 28, 89-100.	2.6	11
46	The effects of vehicular emissions on the activity and diversity of the roadside soil microbial community. Environmental Pollution, 2021, 277, 116744.	3.7	11
47	Using Phosphorus-Rich Biochars to Remediate Lead-Contaminated Soil: Influence on Soil Enzymes and Extractable P. Agronomy, 2020, 10, 454.	1.3	10
48	Industrial past, urban future: using palaeo-studies to determine the industrial legacy of the Barwon Estuary, Victoria, Australia. Marine and Freshwater Research, 2016, 67, 837.	0.7	9
49	Antimony leaching and chemical species analyses in an industrial solid waste: Surface and bulk speciation using ToF-SIMS and XANES. Journal of Hazardous Materials, 2017, 329, 131-140.	6.5	9
50	Metal bioavailability dynamics during a two-year trial using ryegrass (Lolium perenne L.) grown in soils treated with biosolids and metal salts. Soil Research, 2012, 50, 304.	0.6	9
51	Industry Wide Risk Assessment: A Case Study of Cu in Australian Vineyard Soils. Water, Air, and Soil Pollution, 2013, 224, 1.	1.1	8
52	The Design and Synthesis of Fluorescent Coumarin Derivatives and Their Study for Cu2+ Sensing with an Application for Aqueous Soil Extracts. Molecules, 2019, 24, 3569.	1.7	8
53	Assessing the Plant Growth Promoting and Arsenic Tolerance Potential of Bradyrhizobium japonicum CB1809. Environmental Management, 2020, 66, 930-939.	1.2	8
54	Metal Chelation in the Rhizosphere. Agronomy, 0, , 57-93.	0.2	7

#	Article	IF	CITATIONS
55	Inundation of a floodplain lake woodlands system: nutritional profiling and benefit to mature Eucalyptus largiflorens (Black Box) trees. Wetlands Ecology and Management, 2018, 26, 961-975.	0.7	6
56	Horticultural Use of Copper-Based Fungicides Has Not Increased Copper Concentrations in Sediments in the Mid- and Upper Yarra Valley. Water, Air, and Soil Pollution, 2013, 224, 1.	1.1	4
57	Measuring Soil Metal Bioavailability in Roadside Soils of Different Ages. Environments - MDPI, 2020, 7, 91.	1.5	4
58	Preliminary investigation of effects of copper on a terrestrial population of the antarctic rotifer Philodina sp Chemosphere, 2022, 300, 134413.	4.2	4
59	Influence of Increasing Soil Copper Concentration on the Susceptibility of Phosphomonoesterase and Urease to Heat Disturbance. Water, Air, and Soil Pollution, 2013, 224, 1.	1.1	3
60	Probing the effects of different lead compounds on the bioavailability of lead to plants. Chemosphere, 2019, 230, 24-28.	4.2	3
61	The Variation in Groundwater Microbial Communities in an Unconfined Aquifer Contaminated by Multiple Nitrogen Contamination Sources. Water (Switzerland), 2022, 14, 613.	1.2	3
62	Are root elongation assays suitable for establishing metallic anion ecotoxicity thresholds?. Journal of Hazardous Materials Letters, 2021, 2, 100024.	2.0	2
63	Bioavailability of Cu, Zn, and Mn in Contaminated Soils and Speciation in Soil Solution. , 2001, , .		1
64	A Preliminary Assessment of As and F Uptake by Plants Growing on Uncontaminated Soils. Water, Air, and Soil Pollution, 2021, 232, 1.	1.1	0
65	Effect of seed treatment on the emergence of Cassia brewsteri and Lysiphyllum carronii seeds stored in soil. Rangeland Journal, 2007, 29, 133.	0.4	0
66	Development of SiO2-coumarin fluorescent nanohybrid and its application for Cu(II) sensing in aqueous extracts of roadside soil. Journal of Nanoparticle Research, 2022, 24, .	0.8	0