
Jonathan A Fletcher

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4841694/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Phase II Study of Ponatinib in Advanced Gastrointestinal Stromal Tumors: Efficacy, Safety, and Impact of Liquid Biopsy and Other Biomarkers. Clinical Cancer Research, 2022, 28, 1268-1276.	3.2	7
2	Abstract 5648: Response and resistance to CDK2 and CDK4/6 inhibition in GIST. Cancer Research, 2022, 82, 5648-5648.	0.4	0
3	PRC2-Inactivating Mutations in Cancer Enhance Cytotoxic Response to DNMT1-Targeted Therapy via Enhanced Viral Mimicry. Cancer Discovery, 2022, 12, 2120-2139.	7.7	14
4	Mesenchymal tumors of the gastrointestinal tract with NTRK rearrangements: a clinicopathological, immunophenotypic, and molecular study of eight cases, emphasizing their distinction from gastrointestinal stromal tumor (GIST). Modern Pathology, 2021, 34, 95-103.	2.9	52
5	Resistance to Avapritinib in PDGFRA-Driven GIST Is Caused by Secondary Mutations in the PDGFRA Kinase Domain. Cancer Discovery, 2021, 11, 108-125.	7.7	47
6	Relationships between highly recurrent tumor suppressor alterations in 489 leiomyosarcomas. Cancer, 2021, 127, 2666-2673.	2.0	15
7	YWHAE-NUTM2 oncoprotein regulates proliferation and cyclin D1 via RAF/MAPK and Hippo pathways. Oncogenesis, 2021, 10, 37.	2.1	11
8	E3 ligase MKRN3 is a tumor suppressor regulating PABPC1 ubiquitination in non–small cell lung cancer. Journal of Experimental Medicine, 2021, 218, .	4.2	18
9	Cyclin D1 is a mediator of gastrointestinal stromal tumor KIT-independence. Oncogene, 2019, 38, 6615-6629.	2.6	21
10	KIT-Dependent and KIT-Independent Genomic Heterogeneity of Resistance in Gastrointestinal Stromal Tumors — TORC1/2 Inhibition as Salvage Strategy. Molecular Cancer Therapeutics, 2019, 18, 1985-1996.	1.9	22
11	Identification of phenothiazine as an ETV1‑targeting agent in gastrointestinal stromal tumors using the Connectivity Map. International Journal of Oncology, 2019, 55, 536-546.	1.4	3
12	Mutational inactivation of mTORC1 repressor gene <i>DEPDC5</i> in human gastrointestinal stromal tumors. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 22746-22753.	3.3	29
13	Visualizing Engrafted Human Cancer and Therapy Responses in Immunodeficient Zebrafish. Cell, 2019, 177, 1903-1914.e14.	13.5	188
14	Genomic aberrations in cell cycle genes predict progression of KIT-mutant gastrointestinal stromal tumors (GISTs). Clinical Sarcoma Research, 2019, 9, 3.	2.3	26
15	Complementary activity of tyrosine kinase inhibitors against secondary kit mutations in imatinib-resistant gastrointestinal stromal tumours. British Journal of Cancer, 2019, 120, 612-620.	2.9	109
16	<i>ZMYM2-FGFR1</i> fusion as secondary change in acute myeloid leukemia. Leukemia and Lymphoma, 2019, 60, 556-558.	0.6	0
17	LMTK3 is essential for oncogenic KIT expression in KIT-mutant GIST and melanoma. Oncogene, 2019, 38, 1200-1210.	2.6	16
18	Overcoming heterogenity in imatinib-resistant gastrointestinal stromal tumor. Oncotarget, 2019, 10, 6286-6287.	0.8	7

JONATHAN A FLETCHER

#	Article	IF	CITATIONS
19	BCOR Internal Tandem Duplication in High-grade Uterine Sarcomas. American Journal of Surgical Pathology, 2018, 42, 335-341.	2.1	118
20	BPR 1J373, a novel multitargeted kinase inhibitor, effectively suppresses the growth of gastrointestinal stromal tumor. Cancer Science, 2018, 109, 3591-3601.	1.7	5
21	Immunohistochemistry for histone H3G34W and H3K36M is highly specific for giant cell tumor of bone and chondroblastoma, respectively, in FNA and core needle biopsy. Cancer Cytopathology, 2018, 126, 552-566.	1.4	48
22	Gastrointestinal stromal tumor enhancers support a transcription factor network predictive of clinical outcome. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E5746-E5755.	3.3	20
23	Phase Ib study of rapid alternation of sunitinib (SU) and regorafenib (RE) in patients (pts) with advanced gastrointestinal stromal tumor (GIST) Journal of Clinical Oncology, 2018, 36, 11510-11510.	0.8	1
24	LMTK3 to regulate the translation of oncogenic KIT in GIST regardless of imatinib sensitivity Journal of Clinical Oncology, 2018, 36, 11535-11535.	0.8	0
25	MAX inactivation is an early event in GIST development that regulates p16 and cell proliferation. Nature Communications, 2017, 8, 14674.	5.8	53
26	Correlation of Long-term Results of Imatinib in Advanced Gastrointestinal Stromal Tumors With Next-Generation Sequencing Results. JAMA Oncology, 2017, 3, 944.	3.4	73
27	Inhibition of Bcl-2 family members sensitises soft tissue leiomyosarcomas to chemotherapy. British Journal of Cancer, 2016, 114, 1219-1226.	2.9	13
28	Inhibition of Bcl-2 family members sensitizes mesenchymal chondrosarcoma to conventional chemotherapy: report on a novel mesenchymal chondrosarcoma cell line. Laboratory Investigation, 2016, 96, 1128-1137.	1.7	31
29	Alternate <scp><i>PAX</i></scp> <i>3</i> â€ <scp><i>FOXO</i></scp> <i>1</i> oncogenic fusion in biphenotypic sinonasal sarcoma. Genes Chromosomes and Cancer, 2016, 55, 25-29.	1.5	67
30	Gender-Specific Molecular and Clinical Features Underlie Malignant Pleural Mesothelioma. Cancer Research, 2016, 76, 319-328.	0.4	73
31	Conjoined hyperactivation of the RAS and PI3K pathways in advanced GIST Journal of Clinical Oncology, 2016, 34, e22520-e22520.	0.8	7
32	Targeting SALL4 by entinostat in lung cancer. Oncotarget, 2016, 7, 75425-75440.	0.8	29
33	Preclinical activity of selinexor, an inhibitor of XPO1, in sarcoma. Oncotarget, 2016, 7, 16581-16592.	0.8	57
34	Inhibition of KIT-Glycosylation by 2-Deoxyglucose Abrogates KIT-Signaling and Combination with ABT-263 Synergistically Induces Apoptosis in Gastrointestinal Stromal Tumor. PLoS ONE, 2015, 10, e0120531.	1.1	14
35	CDKN2A/p16 Loss Implicates CDK4 as a Therapeutic Target in Imatinib-Resistant Dermatofibrosarcoma Protuberans. Molecular Cancer Therapeutics, 2015, 14, 1346-1353.	1.9	44
36	<i>KRAS</i> and <i>KIT</i> Gatekeeper Mutations Confer Polyclonal Primary Imatinib Resistance in GI Stromal Tumors: Relevance of Concomitant Phosphatidylinositol 3-Kinase/AKT Dysregulation. Journal of Clinical Oncology, 2015, 33, e93-e96.	0.8	48

JONATHAN A FLETCHER

#	Article	IF	CITATIONS
37	Key Issues in the Clinical Management of Gastrointestinal Stromal Tumors: An Expert Discussion. Oncologist, 2015, 20, 823-830.	1.9	26
38	Ponatinib Inhibits Polyclonal Drug-Resistant KIT Oncoproteins and Shows Therapeutic Potential in Heavily Pretreated Gastrointestinal Stromal Tumor (GIST) Patients. Clinical Cancer Research, 2014, 20, 5745-5755.	3.2	137
39	A recurrent neomorphic mutation in MYOD1 defines a clinically aggressive subset of embryonal rhabdomyosarcoma associated with PI3K-AKT pathway mutations. Nature Genetics, 2014, 46, 595-600.	9.4	152
40	Phosphoinositide 3-Kinase Inhibitors Combined with Imatinib in Patient-Derived Xenograft Models of Gastrointestinal Stromal Tumors: Rationale and Efficacy. Clinical Cancer Research, 2014, 20, 6071-6082.	3.2	45
41	Frequent expression of KIT in endometrial stromal sarcoma with YWHAE genetic rearrangement. Modern Pathology, 2014, 27, 751-757.	2.9	71
42	PRC2 is recurrently inactivated through EED or SUZ12 loss in malignant peripheral nerve sheath tumors. Nature Genetics, 2014, 46, 1227-1232.	9.4	472
43	Dystrophin is a tumor suppressor in human cancers with myogenic programs. Nature Genetics, 2014, 46, 601-606.	9.4	142
44	Identification of aurora kinase A as an unfavorable prognostic factor and potential treatment target for metastatic gastrointestinal stromal tumors. Oncotarget, 2014, 5, 4071-4086.	0.8	24
45	14-3-3 fusion oncogenes in high-grade endometrial stromal sarcoma. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 929-934.	3.3	239
46	The Clinicopathologic Features of YWHAE-FAM22 Endometrial Stromal Sarcomas. American Journal of Surgical Pathology, 2012, 36, 641-653.	2.1	265
47	Cyclin D1 as a Diagnostic Immunomarker for Endometrial Stromal Sarcoma With YWHAE-FAM22 Rearrangement. American Journal of Surgical Pathology, 2012, 36, 1562-1570.	2.1	184
48	Characterization of the chromosomal translocation t(10;17)(q22;p13) in clear cell sarcoma of kidney. Journal of Pathology, 2012, 227, 72-80.	2.1	125
49	Targeting the <i>c-Kit</i> Promoter C-quadruplexes with 6-Substituted Indenoisoquinolines. ACS Medicinal Chemistry Letters, 2010, 1, 306-310.	1.3	67
50	KIT Mutations in GIST. Current Opinion in Genetics and Development, 2007, 17, 3-7.	1.5	114
51	Role of KIT and platelet-derived growth factor receptors as oncoproteins. Seminars in Oncology, 2004, 31, 4-11.	0.8	75
52	Molecular biology and cytogenetics of soft tissue sarcomas: Relevance for targeted therapies. , 2004, 120, 99-116.		13
53	Upper respiratory tract carcinoma with chromosomal translocation 15;19. Cancer, 2001, 92, 1195-1203.	2.0	102
54	Variant translocations involving 16q22 and 17p13 in solid variant and extraosseous forms of		88

aneurysmal bone cyst. , 2000, 28, 233-234.

JONATHAN A FLETCHER

#	Article	IF	CITATIONS
55	Classification of human liposarcoma and lipoma using ex vivo proton NMR spectroscopy. Magnetic Resonance in Medicine, 1999, 41, 257-267.	1.9	90
56	Various regions within the alpha-helical domain of theCOL1A1 gene are fused to the second exon of thePDGFB gene in dermatofibrosarcomas and giant-cell fibroblastomas. , 1998, 23, 187-193.		158
5 7	Human pancreatic cancer cells (MPANC-96) recognized by autologous tumor-infiltrating lymphocytes afterin vitro as well asin vivo tumor expansion. , 1997, 71, 993-999.		23
58	Comparison between the in vitro intrinsic radiation sensitivity of human soft tissue sarcoma and breast cancer cell lines. , 1996, 61, 290-294.		28
59	Identification of a YAC spanning the translocation breakpoint t(8;22) associated with acute monocytic leukemia. , 1996, 15, 191-194.		20
60	Translocation t(8;13)(p11;q11-12) in stem cell leukemia/lymphoma of t-cell and myeloid lineages. Genes Chromosomes and Cancer, 1995, 12, 148-151.	1.5	23
61	Cytogenetic and histologic findings in 17 pulmonary chondroid hamartomas: Evidence for a pathogenetic relationship with lipomas and leiomyomas. Genes Chromosomes and Cancer, 1995, 12, 220-223.	1.5	66
62	Cardiac synovial sarcoma with translocation (X; 18) associated with asbestos exposure. Cancer, 1994, 73, 74-78.	2.0	64
63	Identification of genetically aberrant cell lineages in Wilms' tumors. Genes Chromosomes and Cancer, 1994, 10, 40-48.	1.5	12
64	Cytogenetic findings in pediatric adipose tumors: Consistent rearrangement of chromosome 8 in lipoblastoma. Genes Chromosomes and Cancer, 1993, 6, 24-29.	1.5	87
65	Aberrant regulation of ras proteins in malignant tumour cells from type 1 neurofibromatosis patients. Nature, 1992, 356, 713-715.	13.7	653
66	Trisomy 5 and trisomy 7 are nonrandom aberrations in pigmented villonodular synovitis: Confirmation of trisomy 7 in uncultured cells. Genes Chromosomes and Cancer, 1992, 4, 264-266.	1.5	88
67	Translocation (I2;22)(q13–I4;q I 2) is a nonrandom aberration in soft-tissue clear-cell sarcoma. Genes Chromosomes and Cancer, 1992, 5, 184-184.	1.5	25
68	Clonal 6p21 rearrangement is restricted to the mesenchymal component of an endometrial polyp. Genes Chromosomes and Cancer, 1992, 5, 260-263.	1.5	63
69	Cytogenetic evidence of clonality in a case of pigmented villonodular synovitis. Cancer, 1991, 67, 121-125.	2.0	113
70	Mechanisms of oncogenic KIT signal transduction in primary gastrointestinal stromal tumors (GISTs). , 0, .		1