Tatjana D Savić

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4841105/publications.pdf

Version: 2024-02-01

1040056 1058476 14 293 9 14 citations h-index g-index papers 14 14 14 454 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Surface modification of anatase nanoparticles with fused ring catecholate type ligands: a combined DFT and experimental study of optical properties. Nanoscale, 2012, 4, 1612.	5.6	57
2	The effect of substituents on the surface modification of anatase nanoparticles with catecholate-type ligands: a combined DFT and experimental study. Physical Chemistry Chemical Physics, 2014, 16, 20796-20805.	2.8	50
3	Surface modification of anatase nanoparticles with fused ring salicylate-type ligands (3-hydroxy-2-naphthoic acids): a combined DFT and experimental study of optical properties. Nanoscale, 2013, 5, 7601.	5.6	46
4	The role of surface defect sites of titania nanoparticles in the photocatalysis: Aging and modification. Applied Catalysis B: Environmental, 2013, 138-139, 122-127.	20.2	30
5	Synthesis, strong room-temperature PL and photocatalytic activity of ZnO/ZnWO4 rod-like nanoparticles. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2012, 177, 645-651.	3.5	27
6	Anatase nanoparticles surface modified with fused ring salicylate-type ligands (1-hydroxy-2-naphthoic) Tj ETQq0	0 0 rgBT /	Overlock 10 T
7	Structural, optical and photodegradation properties of pure and Fe-doped titania nanoparticles probed using simulated Solar light. Ceramics International, 2016, 42, 1521-1529.	4.8	12
8	Formation of ZnIn2S4 nanosheets and tubular structures in organic media. Materials Research Bulletin, 2017, 87, 140-147.	5.2	12
9	A Synergy of ZnO and ZnWO4 in Composite Nanostructures Deduced from Optical Properties and Photocatalysis. Journal of Cluster Science, 2013, 24, 679-688.	3.3	11
10	Effect of Fe3+ ion doping on photocatalytic ability of nanozirconia ceramic to degrade 2, 4, 6-trichlorophenol. Ceramics International, 2020, 46, 6820-6827.	4.8	9
11	Binary oxide ceramics for enhanced phenols degradation under simulated Solar light. Journal of the American Ceramic Society, 2018, 101, 1420-1431.	3.8	7
12	Simulated solar light driven performance of nanosized ZnIn2S4/dye system: decolourization vs. photodegradation. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 388, 112154.	3.9	7
13	Electrochemical oxidation of 2,4,6-trichlorophenol on iron-doped nanozirconia ceramic. Journal of the Serbian Chemical Society, 2021, 86, 495-505.	0.8	1
14	Application of Ni(II)-alumina composites for electrocatalytic reduction of 4-nitrophenol. Science of Sintering, 2020, 52, 359-370.	1.4	1