
Jennifer R Deuis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4841079/publications.pdf Version: 2024-02-01

IENNIEED P DEILIS

#	Article	lF	CITATIONS
1	Novel Neurotoxic Activity in Calliophis intestinalis Venom. Neurotoxicity Research, 2022, 40, 173-178.	1.3	3
2	Structural and functional insights into the inhibition of human voltage-gated sodium channels by $\hat{l}^1\!\!\!/_4$ -conotoxin KIIIA disulfide isomers. Journal of Biological Chemistry, 2022, 298, 101728.	1.6	9
3	Low potency inhibition of NaV1.7 by externally applied QX-314 via a depolarizing shift in the voltage-dependence of activation. European Journal of Pharmacology, 2022, , 175013.	1.7	Ο
4	Neurotoxic and cytotoxic peptides underlie the painful stings of the tree nettle Urtica ferox. Journal of Biological Chemistry, 2022, 298, 102218.	1.6	5
5	Vincristine-induced peripheral neuropathy is driven by canonical NLRP3 activation and IL-1β release. Journal of Experimental Medicine, 2021, 218, .	4.2	29
6	Evaluation of Efficient Non-reducing Enzymatic and Chemical Ligation Strategies for Complex Disulfide-Rich Peptides. Bioconjugate Chemistry, 2021, 32, 2407-2419.	1.8	4
7	The Tarantula Venom Peptide Eo1a Binds to the Domain II S3-S4 Extracellular Loop of Voltage-Gated Sodium Channel NaV1.8 to Enhance Activation. Frontiers in Pharmacology, 2021, 12, 789570.	1.6	4
8	Inflammatory and Neuropathic Gene Expression Signatures of Chemotherapy-Induced Neuropathy Induced by Vincristine, Cisplatin, and Oxaliplatin in C57BL/6J Mice. Journal of Pain, 2020, 21, 182-194.	0.7	38
9	Enzymatic Ligation of a Pore Blocker Toxin and a Gating Modifier Toxin: Creating Double-Knotted Peptides with Improved Sodium Channel NaV1.7 Inhibition. Bioconjugate Chemistry, 2020, 31, 64-73.	1.8	23
10	Discovery, Pharmacological Characterisation and NMR Structure of the Novel µ-Conotoxin SxIIIC, a Potent and Irreversible NaV Channel Inhibitor. Biomedicines, 2020, 8, 391.	1.4	12
11	Recombinant production, bioconjugation and membrane binding studies of Pn3a, a selective NaV1.7 inhibitor. Biochemical Pharmacology, 2020, 181, 114148.	2.0	7
12	Neurotoxic peptides from the venom of the giant Australian stinging tree. Science Advances, 2020, 6, .	4.7	16
13	Characterization of Synthetic Tf2 as a NaV1.3 Selective Pharmacological Probe. Biomedicines, 2020, 8, 155.	1.4	8
14	Manipulation of a spider peptide toxin alters its affinity for lipid bilayers and potency and selectivity for voltage-gated sodium channel subtype 1.7. Journal of Biological Chemistry, 2020, 295, 5067-5080.	1.6	13
15	Addition of K22 Converts Spider Venom Peptide Pme2a from an Activator to an Inhibitor of NaV1.7. Biomedicines, 2020, 8, 37.	1.4	6
16	Pharmacological activity and NMR solution structure of the leech peptide HSTX-I. Biochemical Pharmacology, 2020, 181, 114082.	2.0	2
17	Mapping the Molecular Surface of the Analgesic NaV1.7-Selective Peptide Pn3a Reveals Residues Essential for Membrane and Channel Interactions. ACS Pharmacology and Translational Science, 2020, 3, 535-546.	2.5	16
18	High-Throughput Fluorescence Assays for Ion Channels and GPCRs. Advances in Experimental Medicine and Biology, 2020, 1131, 27-72.	0.8	13

Jennifer R Deuis

#	Article	IF	CITATIONS
19	Na _V 1.6 regulates excitability of mechanosensitive sensory neurons. Journal of Physiology, 2019, 597, 3751-3768.	1.3	31
20	Development of a high-throughput fluorescent no-wash sodium influx assay. PLoS ONE, 2019, 14, e0213751.	1.1	13
21	Antiallodynic effects of the selective NaV1.7 inhibitor Pn3a in a mouse model of acute postsurgical pain: evidence for analgesic synergy with opioids and baclofen. Pain, 2019, 160, 1766-1780.	2.0	35
22	Assessment of the TRPM8 inhibitor AMTB in breast cancer cells and its identification as an inhibitor of voltage gated sodium channels. Life Sciences, 2018, 198, 128-135.	2.0	32
23	The E15R Point Mutation in Scorpion Toxin Cn2 Uncouples Its Depressant and Excitatory Activities on Human Na _V 1.6. Journal of Medicinal Chemistry, 2018, 61, 1730-1736.	2.9	9
24	Role of complement anaphylatoxin receptors in a mouse model of acute burn-induced pain. Molecular Immunology, 2018, 94, 68-74.	1.0	4
25	Toxins as tools: Fingerprinting neuronal pharmacology. Neuroscience Letters, 2018, 679, 4-14.	1.0	9
26	Burn Pain: A Systematic and Critical Review of Epidemiology, Pathophysiology, and Treatment. Pain Medicine, 2018, 19, 708-734.	0.9	61
27	Pharmacological characterisation of the highly NaV1.7 selective spider venom peptide Pn3a. Scientific Reports, 2017, 7, 40883.	1.6	120
28	Role of the NLRP3 inflammasome in a model of acute burn-induced pain. Burns, 2017, 43, 304-309.	1.1	22
29	Multiple sodium channel isoforms mediate the pathological effects of Pacific ciguatoxin-1. Scientific Reports, 2017, 7, 42810.	1.6	67
30	Sodium Channels and Venom Peptide Pharmacology. Advances in Pharmacology, 2017, 79, 67-116.	1.2	47
31	The pharmacology of voltage-gated sodium channel activators. Neuropharmacology, 2017, 127, 87-108.	2.0	57
32	Δâ€Myrtoxinâ€Mp1a is a Helical Heterodimer from the Venom of the Jack Jumper Ant that has Antimicrobial, Membraneâ€Disrupting, and Nociceptive Activities. Angewandte Chemie - International Edition, 2017, 56, 8495-8499.	7.2	28
33	Modulatory features of the novel spider toxin μâ€₹RTXâ€Ðf1a isolated from the venom of the spider <i>Davus fasciatus</i> . British Journal of Pharmacology, 2017, 174, 2528-2544.	2.7	46
34	NaV1.7 as a pain target – From gene to pharmacology. , 2017, 172, 73-100.		104
35	Methods Used to Evaluate Pain Behaviors in Rodents. Frontiers in Molecular Neuroscience, 2017, 10, 284.	1.4	687
36	Discovery and mode of action of a novel analgesic β-toxin from the African spider Ceratogyrus darlingi. PLoS ONE, 2017, 12, e0182848.	1.1	22

JENNIFER R DEUIS

#	Article	IF	CITATIONS
37	The structure, dynamics and selectivity profile of a NaV1.7 potency-optimised huwentoxin-IV variant. PLoS ONE, 2017, 12, e0173551.	1.1	33
38	The Snake with the Scorpion's Sting: Novel Three-Finger Toxin Sodium Channel Activators from the Venom of the Long-Glanded Blue Coral Snake (Calliophis bivirgatus). Toxins, 2016, 8, 303.	1.5	53
39	Analgesic Effects of GpTx-1, PF-04856264 and CNV1014802 in a Mouse Model of NaV1.7-Mediated Pain. Toxins, 2016, 8, 78.	1.5	94
40	Transcriptomic and behavioural characterisation of a mouse model of burn pain identify the cholecystokinin 2 receptor as an analgesic target. Molecular Pain, 2016, 12, 174480691666536.	1.0	58
41	Development of a μO-Conotoxin Analogue with Improved Lipid Membrane Interactions and Potency for the Analgesic Sodium Channel NaV1.8. Journal of Biological Chemistry, 2016, 291, 11829-11842.	1.6	37
42	The thermal probe test: A novel behavioral assay to quantify thermal paw withdrawal thresholds in mice. Temperature, 2016, 3, 199-207.	1.6	45
43	Identification and Characterization of ProTx-III [<i>μ</i> -TRTX-Tp1a], a New Voltage-Gated Sodium Channel Inhibitor from Venom of the Tarantula <i>Thrixopelma pruriens</i> . Molecular Pharmacology, 2015, 88, 291-303.	1.0	72
44	α-conotoxin MrIC is a biased agonist at α7 nicotinic acetylcholine receptors. Biochemical Pharmacology, 2015, 94, 155-163.	2.0	16
45	Activation of κ Opioid Receptors in Cutaneous Nerve Endings by Conorphin-1, a Novel Subtype-Selective Conopeptide, Does Not Mediate Peripheral Analgesia. ACS Chemical Neuroscience, 2015, 6, 1751-1758.	1.7	17
46	Analgesic effects of clinically used compounds in novel mouse models of polyneuropathy induced by oxaliplatin and cisplatin. Neuro-Oncology, 2014, 16, 1324-1332.	0.6	44
47	Analgesic treatment of ciguatoxin-induced cold allodynia. Pain, 2013, 154, 1999-2006.	2.0	51
48	An animal model of oxaliplatin-induced cold allodynia reveals a crucial role for Nav1.6 in peripheral pain pathways. Pain, 2013, 154, 1749-1757.	2.0	144