List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4840988/publications.pdf Version: 2024-02-01

Ερικά ΒΔιινιτ

#	Article	IF	CITATIONS
1	Synthesis of isoindolinone phosphonates and their related derivatives by multicomponent reaction. Phosphorus, Sulfur and Silicon and the Related Elements, 2022, 197, 599-600.	1.6	1
2	Synthesis of arylphosphinoyl-functionalized dihydroisoquinolines by Reissert-type reaction and their biological evaluation. Tetrahedron, 2022, 111, 132720.	1.9	1
3	Biginelli reaction of Î ² -ketophosphonates, aromatic or aliphatic aldehydes and urea derivatives. Phosphorus, Sulfur and Silicon and the Related Elements, 2022, 197, 597-598.	1.6	3
4	PMDTA-catalyzed multicomponent synthesis and biological activity of 2-amino-4 <i>H</i> -chromenes containing a phosphonate or phosphine oxide moiety. Organic and Biomolecular Chemistry, 2021, 19, 6883-6891.	2.8	11
5	Six reasons to launch a Young Academy. Nature, 2021, 594, 599-601.	27.8	5
6	Three-component synthesis, utilization and biological activity of phosphinoyl-functionalized isoindolinones. Organic and Biomolecular Chemistry, 2021, 19, 8754-8760.	2.8	6
7	Study of the Three-Component Reactions of 2-Alkynylbenzaldehydes, Aniline, and Dialkyl Phosphites—The Significance of the Catalyst System. Materials, 2021, 14, 6015.	2.9	Ο
8	Microwave-assisted synthesis of benzo[b]phosphole oxide derivatives by oxidative addition of acetylenes and secondary phosphine oxides or alkyl phenyl-H-phosphinates. Tetrahedron, 2021, 102, 132527.	1.9	4
9	Synthesis of 3,4-Dihydropyrimidin-2(1H)-one-phosphonates by the Microwave-Assisted Biginelli Reaction. Catalysts, 2021, 11, 45.	3.5	8
10	Study on the Microwave-Assisted Batch and Continuous Flow Synthesis of N-Alkyl-Isoindolin-1-One-3-Phosphonates by a Special Kabachnik–Fields Condensation. Molecules, 2020, 25, 3307.	3.8	13
11	Synthesis and In Vitro Cytotoxicity and Antibacterial Activity of Novel 1,2,3-Triazol-5-yl-Phosphonates. Molecules, 2020, 25, 2643.	3.8	8
12	Microwave-assisted synthesis of α-aminophosphonates with sterically demanding α-aryl substituents. Synthetic Communications, 2020, 50, 1446-1455.	2.1	8
13	Microwave-Assisted Multicomponent Syntheses of Heterocyclic Phosphonates. Chemistry Proceedings, 2020, 3, .	0.1	1
14	Microwave irradiation and catalysis in organophosphorus chemistry. Phosphorus, Sulfur and Silicon and the Related Elements, 2019, 194, 391-395.	1.6	0
15	Synthesis of (1,2,3-triazol-4-yl)methyl Phosphinates and (1,2,3-Triazol-4-yl)methyl Phosphates by Copper-Catalyzed Azide-Alkyne Cycloaddition. Molecules, 2019, 24, 2085.	3.8	6
16	Microwave-Assisted Kabachnik–Fields Reaction with Amino Alcohols as the Amine Component. Molecules, 2019, 24, 1640.	3.8	11
17	Synthesis of phosphonates in a continuous flow manner. Phosphorus, Sulfur and Silicon and the Related Elements, 2019, 194, 285-286.	1.6	3
18	Microwave-assisted synthesis of α-aminophosphonates and related derivatives by the Kabachnik-Fields reaction. Phosphorus, Sulfur and Silicon and the Related Elements, 2019, 194, 379-381.	1.6	5

#	Article	IF	CITATIONS
19	Application of the Microwave Technique in Continuous Flow Processing of Organophosphorus Chemical Reactions. Materials, 2019, 12, 788.	2.9	23
20	Microwave-assisted synthesis of α-aminophosphine oxides. Phosphorus, Sulfur and Silicon and the Related Elements, 2019, 194, 345-348.	1.6	4
21	Microwave-assisted synthesis of α-aminophosphine oxides by the Kabachnik-Fields reaction applying amides as the starting materials. Synthetic Communications, 2019, 49, 1047-1054.	2.1	8
22	Microwave-assisted synthesis of <i>N,N</i> -bis(phosphinoylmethyl)amines and <i>N,N,N</i> -tris(phosphinoylmethyl)amines bearing different substituents on the phosphorus atoms. Beilstein Journal of Organic Chemistry, 2019, 15, 469-473.	2.2	7
23	Synthesis of 1,2,3-triazolyl-5-diethylphosphonate by domino reaction. Phosphorus, Sulfur and Silicon and the Related Elements, 2019, 194, 377-378.	1.6	1
24	Continuous flow synthesis of α-aryl-α-aminophosphonates. Pure and Applied Chemistry, 2019, 91, 67-76.	1.9	11
25	Synthesis of platinum, palladium and rhodium complexes of α-aminophosphine ligands. Dalton Transactions, 2018, 47, 4755-4778.	3.3	26
26	Access to Fluorazones by Intramolecular Dehydrative Cyclization of Aromatic Tertiary Amides: A Synthetic and Mechanistic Study. Journal of Organic Chemistry, 2018, 83, 2282-2292.	3.2	20
27	Esterification of benzoic acid in a continuous flow microwave reactor. Journal of Flow Chemistry, 2018, 8, 11-19.	1.9	12
28	Synthesis of Polyphosphoesters by Esterification or Transesterification Under Microwave Conditions. Current Green Chemistry, 2018, 5, 185-190.	1.1	2
29	Continuous Flow Alcoholysis of Dialkyl H-Phosphonates with Aliphatic Alcohols. Molecules, 2018, 23, 1618.	3.8	15
30	6. Synthesis of α-aminophosphonates by the Kabachnik–Fields reaction and by the Pudovik reaction. , 2018, , 108-147.		8
31	Microwave-assisted alcoholysis of dialkyl <i>H</i> -phosphonates by diols and amino alcohols. Phosphorus, Sulfur and Silicon and the Related Elements, 2017, 192, 769-775.	1.6	3
32	NMR and symmetry in bisphosphonates R ¹ R ² N-CH[P(O)(OMe) ₂] ₂ . Phosphorus, Sulfur and Silicon and the Related Elements, 2017, 192, 643-650.	1.6	0
33	Advantages of the Microwave Tool in Organophosphorus Syntheses. Synthesis, 2017, 49, 3069-3083.	2.3	28
34	Synthesis and utilization of optically active $\hat{I}\pm$ -aminophosphonate derivatives by Kabachnik-Fields reaction. Tetrahedron, 2017, 73, 5659-5667.	1.9	24
35	Green chemical syntheses and applications within organophosphorus chemistry. Structural Chemistry, 2017, 28, 431-443.	2.0	10
36	The synthesis of α-aryl-α-aminophosphonates and α-aryl-α-aminophosphine oxides by the microwave-assisted Pudovik reaction. Beilstein Journal of Organic Chemistry, 2017, 13, 76-86.	2.2	36

#	Article	IF	CITATIONS
37	Synthesis of Ethyl Octyl α-Aminophosphonate Derivatives. Current Organic Synthesis, 2016, 13, 638-645.	1.3	20
38	Microwave-assisted synthesis of (aminomethylene)bisphosphine oxides and (aminomethylene)bisphosphonates by a three-component condensation. Beilstein Journal of Organic Chemistry, 2016, 12, 1493-1502.	2.2	21
39	Microwave-Assisted Syntheses in Organic Chemistry. Springer Briefs in Molecular Science, 2016, , 11-45.	0.1	12
40	The Spread of the Application of the Microwave Technique in Organic Synthesis. Springer Briefs in Molecular Science, 2016, , 1-10.	0.1	5
41	Synthesis and utilization of α-aminophosphine oxides and related derivatives. Phosphorus, Sulfur and Silicon and the Related Elements, 2016, 191, 1539-1540.	1.6	1
42	Formation of compounds with P–C–N moiety by microwave-assisted condensations. Phosphorus, Sulfur and Silicon and the Related Elements, 2016, 191, 1541-1542.	1.6	3
43	Synthesis of alkyl αâ€aminomethylâ€phenylphosphinates and <i>N,N</i> â€bis(alkoxyphenylphosphinylmethyl)amines by the microwaveâ€assisted Kabachnik–Fields reaction. Heteroatom Chemistry, 2016, 27, 323-335.	0.7	14
44	Milestones in microwave-assisted organophosphorus chemistry. Phosphorus, Sulfur and Silicon and the Related Elements, 2016, 191, 1416-1420.	1.6	4
45	Synthesis and use of α-aminophosphine oxides and N,N-bis(phosphinoylmethyl)amines – A study on the related ring platinum complexes. Journal of Organometallic Chemistry, 2016, 801, 111-121.	1.8	38
46	The Use of MW in Organophosphorus Chemistry. Springer Briefs in Molecular Science, 2016, , 47-76.	0.1	5
47	Synthesis of the Mixed Alkyl Esters of Phenylphosphonic Acid by Two Variations of the Atherton–Todd Protocol. Heteroatom Chemistry, 2015, 26, 29-34.	0.7	3
48	The Catalyst-free Addition of Dialkyl Phosphites on the Triple Bond of Alkyl Phenylpropiolates Under Microwave Conditions. Current Catalysis, 2015, 4, 57-64.	0.5	7
49	Solid-Liquid Phase C-Alkylation of Active Methylene Containing Compounds under Microwave Conditions. Catalysts, 2015, 5, 634-652.	3.5	16
50	Environmentally Friendly Chemistry with Organophosphorus Syntheses in Focus. Periodica Polytechnica: Chemical Engineering, 2015, 59, 82-95.	1.1	6
51	The Potential of Microwave in Organophosphorus Syntheses. Phosphorus, Sulfur and Silicon and the Related Elements, 2015, 190, 647-654.	1.6	9
52	Synthesis of α-Aminophosphonate Derivatives by Microwave-Assisted Kabachnik–Fields Reaction. Phosphorus, Sulfur and Silicon and the Related Elements, 2015, 190, 655-659.	1.6	12
53	Synthesis of <i>N,N</i> â€Bis(dialkoxyphosphinoylmethyl)―and <i>N,N</i> â€Bis(diphenylphosphinoylmethyl)â€i and γâ€amino acid Derivatives by the Microwaveâ€Assisted Double Kabachnik–Fields Reaction. Heteroatom Chemistry, 2015, 26, 106-115.	^{ì2} â€∙ 0.7	23
54	The Addition of Dialkyl Phosphites and Diphenylphosphine Oxide on the Triple Bond of Dimethyl Acetylenedicarboxylate under Solvent-Free and Microwave Conditions. Current Organic Synthesis, 2014, 11, 161-166.	1.3	18

#	Article	IF	CITATIONS
55	2,3-Bisphosphonosuccinic Acid Hexamethyl Ester [(CH3O)2(O)P-CH-COOCH3]2 – NMR-Spectroscopic Studies of ABX and [AM3R3X]2+Z6 Spin Systems. Phosphorus, Sulfur and Silicon and the Related Elements, 2014, 189, 1315-1327.	1.6	3
56	Microwave-assisted alcoholysis of dialkyl phosphites by ethylene glycol and ethanolamine. Pure and Applied Chemistry, 2014, 86, 1723-1728.	1.9	12
57	The synthesis of phosphinates: traditional versus green chemical approaches. Green Processing and Synthesis, 2014, 3, 103-110.	3.4	22
58	A Critical Overview of the Kabachnik-Fields Reactions Utilizing Trialkyl Phosphites in Water as the Reaction Medium: A Study of the Benzaldehyde-Benzylamine Triethyl Phosphite/Diethyl Phosphite Models. Heteroatom Chemistry, 2014, 25, 282-289.	0.7	18
59	αâ€Aminophosphonates and αâ€Aminophosphine Oxides by the Microwaveâ€Assisted Kabachnik–Fields Reactions of 3â€Aminoâ€6â€methylâ€2 <i>H</i> â€pyranâ€2â€ones. Heteroatom Chemistry, 2013, 24, 221-225.	0.7	32
60	The Synthesis of <i>N,N</i> â€Bis(dialkoxyphosphinoylmethyl)―and <i>N,N</i> â€Bis(diphenylphosphinoylmethyl)glycine Esters by the Microwaveâ€Assisted Double Kabachnik–Fields Reaction. Heteroatom Chemistry, 2013, 24, 510-515.	0.7	24
61	Microwave-Assisted Synthesis of Organophosphorus Compounds. Phosphorus, Sulfur and Silicon and the Related Elements, 2013, 188, 48-50.	1.6	10
62	Microwave Irradiation and Phase Transfer Catalysis in C-, O- and N-Alkylation Reactions Current Organic Synthesis, 2013, 10, 751-763.	1.3	33
63	Microwave-Assisted Solid-Liquid Phase Alkylation of Naphthols. Letters in Organic Chemistry, 2013, 10, 330-336.	0.5	10
64	Alcoholysis of Dialkyl Phosphites Under Microwave Conditions. Current Organic Chemistry, 2013, 17, 555-562.	1.6	23
65	Microwave-Assisted Organophosphorus Synthesis. Current Organic Chemistry, 2013, 17, 545-554.	1.6	38
66	O-Arylation of Iodophenols with 2-Fluorobenzaldehyde Under Microwave Conditions. Letters in Drug Design and Discovery, 2013, 11, 114-120.	0.7	3
67	Cyclic Phosphinates by the Alkylation of a Thermally Unstable 1-Hydroxy-1,2- Dihydrophosphinine 1-Oxide and A 3-Hydroxy-3-Phosphabicyclo[3.1.0]Hexane 3-Oxide. Phosphorus, Sulfur and Silicon and the Related Elements, 2012, 187, 357-363.	1.6	14
68	N-Benzyl and N-aryl bis(phospha-Mannich adducts): Synthesis and catalytic activity of the related bidentate chelate platinum complexes in hydroformylation. Journal of Organometallic Chemistry, 2012, 717, 75-82.	1.8	50
69	The Kabachnik–Fields Reaction: Mechanism and Synthetic Use. Molecules, 2012, 17, 12821-12835.	3.8	222
70	Synthesis and Utilization of the Bis(> P(O)CH2)amine Derivatives Obtained by the Double Kabachnik–Fields Reaction with Cyclohexylamine; Quantum Chemical and X-Ray Study of the Related Bidentate Chelate Platinum Complexes. Current Organic Chemistry, 2012, 16, 547-554.	1.6	43
71	Microwaveâ€assisted phosphaâ€michael addition of dialkyl phosphites, a phenylâ€ <i>H</i> â€phosphinate, and diphenylphosphine oxide to maleic derivatives. Heteroatom Chemistry, 2012, 23, 235-240.	0.7	26
72	Microwave-Assisted Esterification of Phosphinic Acids by Alcohols, Phenols, and Alkyl Halogenides. Phosphorus, Sulfur and Silicon and the Related Elements, 2011, 186, 802-803.	1.6	3

#	Article	IF	CITATIONS
73	Microwave-Assisted Alkylation of Phenols by Quaternary Onium Salts. Letters in Organic Chemistry, 2011, 8, 22-27.	0.5	8
74	Microwave-Assisted Esterification of Phosphinic Acids. Current Organic Chemistry, 2011, 15, 1802-1810.	1.6	69
75	Green Chemical Tools in Organophosphorus Chemistry—Organophosphorus Tools in Green Chemistry. Phosphorus, Sulfur and Silicon and the Related Elements, 2011, 186, 613-620.	1.6	15
76	Phase Transfer Catalysis in Phosphorus Chemistry. Catalysis Reviews - Science and Engineering, 2011, 53, 152-198.	12.9	14
77	Solid–Liquid Phase Alkylation of <i>N</i> -Heterocycles: Microwave-Assisted Synthesis as an Environmentally Friendly Alternative. Synthetic Communications, 2010, 40, 2291-2301.	2.1	26
78	Alkylating esterification of 1â€hydroxyâ€3â€phospholene oxides under solventless MW conditions. Heteroatom Chemistry, 2010, 21, 211-214.	0.7	24
79	Heterogeneous Phase Alkylation of Phenols Making Use of Phase Transfer Catalysis and Microwave Irradiation. Letters in Organic Chemistry, 2009, 6, 535-539.	0.5	21
80	Chemoselectivity in the microwave-assisted solvent-free solid–liquid phase benzylation of phenols: O- versus C-alkylation. Tetrahedron Letters, 2008, 49, 5039-5042.	1.4	36