Francesco Lotti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4839657/publications.pdf Version: 2024-02-01

FRANCESCO LOTTI

#	Article	IF	CITATIONS
1	Retromer dysfunction in amyotrophic lateral sclerosis. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	5
2	SETX (senataxin), the helicase mutated in AOA2 and ALS4, functions in autophagy regulation. Autophagy, 2021, 17, 1889-1906.	9.1	34
3	Sumoylation regulates the assembly and activity of the SMN complex. Nature Communications, 2021, 12, 5040.	12.8	8
4	New Insights on the Role of N6-Methyladenosine RNA Methylation in the Physiology and Pathology of the Nervous System. Frontiers in Molecular Biosciences, 2020, 7, 555372.	3.5	19
5	Systematic elucidation of neuron-astrocyte interaction in models of amyotrophic lateral sclerosis using multi-modal integrated bioinformatics workflow. Nature Communications, 2020, 11, 5579.	12.8	28
6	Paclitaxel-induced peripheral neuropathy is caused by epidermal ROS and mitochondrial damage through conserved MMP-13 activation. Scientific Reports, 2020, 10, 3970.	3.3	31
7	Minor snRNA gene delivery improves the loss of proprioceptive synapses on SMA motor neurons. JCI Insight, 2020, 5, .	5.0	19
8	Deletion of <i>Ripk3</i> Prevents Motor Neuron Death <i>In Vitro</i> but not <i>In Vivo</i> . ENeuro, 2019, 6, ENEURO.0308-18.2018.	1.9	35
9	Stasimon Contributes to the Loss of Sensory Synapses and Motor Neuron Death in a Mouse Model of Spinal Muscular Atrophy. Cell Reports, 2019, 29, 3885-3901.e5.	6.4	38
10	Stasimon/Tmem41b localizes to mitochondria-associated ER membranes and is essential for mouse embryonic development. Biochemical and Biophysical Research Communications, 2018, 506, 463-470.	2.1	31
11	Pharmacokinetics, pharmacodynamics, and efficacy of a small-molecule <i>SMN2</i> splicing modifier in mouse models of spinal muscular atrophy. Human Molecular Genetics, 2016, 25, 1885-1899.	2.9	28
12	A Stem Cell Model of the Motor Circuit Uncouples Motor Neuron Death from Hyperexcitability Induced by SMN Deficiency. Cell Reports, 2016, 16, 1416-1430.	6.4	31
13	The Regulatory Machinery of Neurodegeneration in InÂVitro Models of Amyotrophic Lateral Sclerosis. Cell Reports, 2015, 12, 335-345.	6.4	42
14	SMN control of RNP assembly: From post-transcriptional gene regulation to motor neuron disease. Seminars in Cell and Developmental Biology, 2014, 32, 22-29.	5.0	144
15	SMN Is Essential for the Biogenesis of U7 Small Nuclear Ribonucleoprotein and 3′-End Formation of Histone mRNAs. Cell Reports, 2013, 5, 1187-1195.	6.4	76
16	A Cell System for Phenotypic Screening of Modifiers of SMN2 Gene Expression and Function. PLoS ONE, 2013, 8, e71965.	2.5	14
17	A Role for SMN Exon 7 Splicing in the Selective Vulnerability of Motor Neurons in Spinal Muscular Atrophy. Molecular and Cellular Biology, 2012, 32, 126-138.	2.3	98
18	SMN Is Required for Sensory-Motor Circuit Function in Drosophila. Cell, 2012, 151, 427-439.	28.9	167

Francesco Lotti

#	Article	IF	CITATIONS
19	An SMN-Dependent U12 Splicing Event Essential for Motor Circuit Function. Cell, 2012, 151, 440-454.	28.9	279
20	SMN Deficiency Causes Tissue-Specific Perturbations in the Repertoire of snRNAs and Widespread Defects in Splicing. Cell, 2008, 133, 585-600.	28.9	553
21	<i>In vivo</i> selection of genetically modified erythroblastic progenitors leads to long-term correction of β-thalassemia. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 10547-10552.	7.1	137
22	The Gemin5 Protein of the SMN Complex Identifies snRNAs. Molecular Cell, 2006, 23, 273-279.	9.7	135
23	Protein Kinase A-Mediated Synapsin I Phosphorylation Is a Central Modulator of Ca2+-Dependent Synaptic Activity. Journal of Neuroscience, 2006, 26, 11670-11681.	3.6	135
24	70. Long Term Correction of beta-Thalassemia by Transplantation of Transduced Hematopoietic Stem Cells. Molecular Therapy, 2006, 13, S30.	8.2	0
25	Competitive Engraftment of Hematopoietic Stem Cells Genetically Modified with a Truncated Erythropoietin Receptor. Human Gene Therapy, 2005, 16, 594-608.	2.7	13
26	Deletion of a Negatively Acting Sequence in a Chimeric GATA-1 Enhancer-Long Terminal Repeat Greatly Increases Retrovirally Mediated Erythroid Expression. Journal of Biological Chemistry, 2004, 279, 10523-10531.	3.4	6
27	The Choice of a Suitable Lentivirus Vector. , 2003, 229, 17-27.		8
28	Transcriptional Targeting of Lentiviral Vectors by Long Terminal Repeat Enhancer Replacement. Journal of Virology, 2002, 76, 3996-4007.	3.4	52
29	cDNA cloning and developmental expression of cellular nucleic acid-binding protein (CNBP) gene in Xenopus laevis. Gene, 2000, 241, 35-43. Involvement of the Xenopus laevis Ro60 autoantigen in the alternative interaction of La and CNBP	2.2	20
30	proteins with the 5′UTR of L4 ribosomal protein mRNA †1 â€In previous papers the numbering of Xenopus ribosomal proteins followed the system introduced in our first study (Pierandrei-Amaldi & Beccari,) Tj ETQqO 0 0	rgBT /Ove 4.2	rlock 10 Tf 50
31	rat system for a unified nomenclature (Wool et al., 1990). Thus, the Xenopus r-protein that we previously designated. Journal of Molecular Biology, 1998, 281, 593-608. Cellular nucleic acid binding protein binds a conserved region of the $5\hat{a}\in^2$ UTR of Xenopus laevis ribosomal protein mRNAs. Journal of Molecular Biology, 1997, 267, 264-275.	4.2	100
32	Stasimon Contributes to the Loss of Sensory Synapses and Motor Neuron Death in a Mouse Model of Spinal Muscular Atrophy. SSRN Electronic Journal, 0, , .	0.4	0