Ferdinand Plaschke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4839529/publications.pdf

Version: 2024-02-01

94433 6,641 139 37 citations h-index papers

77 g-index 193 193 193 2589 docs citations times ranked citing authors all docs

69250

#	Article	IF	CITATIONS
1	Cometary plasma science. Experimental Astronomy, 2022, 54, 1129-1167.	3.7	3
2	Particle energization in space plasmas: towards a multi-point, multi-scale plasma observatory. Experimental Astronomy, 2022, 54, 427-471.	3.7	14
3	Multi-scale evolution of Kelvin–Helmholtz waves at the Earth's magnetopause during southward IMF periods. Physics of Plasmas, 2022, 29, .	1.9	8
4	Investigation of the homogeneity of energy conversion processes at dipolarization fronts from MMS measurements. Physics of Plasmas, 2022, 29, .	1.9	5
5	Multi-scale observations of the magnetopause Kelvin–Helmholtz waves during southward IMF. Physics of Plasmas, 2022, 29, .	1.9	12
6	Statistical investigation of electric field fluctuations around the lower-hybrid frequency range at dipolarization fronts in the near-earth magnetotail. Physics of Plasmas, 2022, 29, .	1.9	3
7	Millisecond observations of nonlinear wave–electron interaction in electron phase space holes. Physics of Plasmas, 2022, 29, .	1.9	3
8	Downstream high-speed plasma jet generation as a direct consequence of shock reformation. Nature Communications, 2022, 13, 598.	12.8	15
9	Magnetosheath Jet Occurrence Rate in Relation to CMEs and SIRs. Journal of Geophysical Research: Space Physics, 2022, 127, .	2.4	13
10	Error estimate for fluxgate magnetometer in-flight calibration on a spinning spacecraft. Geoscientific Instrumentation, Methods and Data Systems, 2021, 10, 13-24.	1.6	3
11	BepiColombo Science Investigations During Cruise and Flybys at the Earth, Venus and Mercury. Space Science Reviews, 2021, 217, 1.	8.1	25
12	MMS Observations of Reconnection Separatrix Region in the Magnetotail at Different Distances From the Active Neutral Xâ€Line. Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA028694.	2.4	5
13	Statistical study of linear magnetic hole structures near Earth. Annales Geophysicae, 2021, 39, 239-253.	1.6	16
14	Pickâ€Up Ion Cyclotron Waves Around Mercury. Geophysical Research Letters, 2021, 48, e2021GL092606.	4.0	8
15	The BepiColombo Planetary Magnetometer MPO-MAG: What Can We Learn from the Hermean Magnetic Field?. Space Science Reviews, 2021, 217, 1.	8.1	45
16	MMS Observations of Field Line Resonances Under Disturbed Solar Wind Conditions. Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA028936.	2.4	2
17	Magnetic Holes in the Solar Wind and Magnetosheath Near Mercury. Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA028961.	2.4	18
18	Magnetosheath plasma flow model around Mercury. Annales Geophysicae, 2021, 39, 563-570.	1.6	4

#	Article	IF	CITATIONS
19	Upperâ∈Hybrid Waves Driven by Meandering Electrons Around Magnetic Reconnection X Line. Geophysical Research Letters, 2021, 48, e2021GL093164.	4.0	13
20	Venus's induced magnetosphere during active solar wind conditions at BepiColombo's Venus 1 flyby. Annales Geophysicae, 2021, 39, 811-831.	1.6	3
21	Solar Wind Control of Magnetosheath Jet Formation and Propagation to the Magnetopause. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029592.	2.4	16
22	Magnetic Field in Magnetosheath Jets: A Statistical Study of $\langle i \rangle B \langle i \rangle \langle sub \rangle \langle i \rangle Z \langle i \rangle \langle sub \rangle$ Near the Magnetopause. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029188.	2.4	2
23	Magnetopause ripples going against the flow form azimuthally stationary surface waves. Nature Communications, 2021, 12, 5697.	12.8	17
24	Electron Bernstein waves driven by electron crescents near the electron diffusion region. Nature Communications, 2020, 11, 141.	12.8	26
25	Classifying Magnetosheath Jets Using MMS: Statistical Properties. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027754.	2.4	27
26	Investigating Mercury's Environment with the Two-Spacecraft BepiColombo Mission. Space Science Reviews, 2020, 216, 1.	8.1	71
27	Space Weather Magnetometer Aboard GEO-KOMPSAT-2A. Space Science Reviews, 2020, 216, 1.	8.1	13
28	The BepiColombo–Mio Magnetometer en Route to Mercury. Space Science Reviews, 2020, 216, 1.	8.1	19
29	Scale Sizes of Magnetosheath Jets. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA027962.	2.4	23
30	Do Statistical Models Capture the Dynamics of the Magnetopause During Sudden Magnetospheric Compressions?. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027289.	2.4	26
31	Decay of Kelvinâ€Helmholtz Vortices at the Earth's Magnetopause Under Pure Southward IMF Conditions. Geophysical Research Letters, 2020, 47, e2020GL087574.	4.0	10
32	On the alignment of velocity and magnetic fields within magnetosheath jets. Annales Geophysicae, 2020, 38, 287-296.	1.6	7
33	On the deviation from Maxwellian of the ion velocity distribution functions in the turbulentÂmagnetosheath. Journal of Plasma Physics, 2020, 86, .	2.1	15
34	Electron Acceleration and Thermalization at Magnetotail Separatrices. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027440.	2.4	21
35	Singing Comet Waves in a Solar Wind Convective Electric Field Frame. Geophysical Research Letters, 2020, 47, e2020GL087418.	4.0	5
36	On the magnetic characteristics of magnetic holes in the solar wind between Mercury and Venus. Annales Geophysicae, 2020, 38, 51-60.	1.6	26

#	Article	IF	CITATIONS
37	Statistical Study of Magnetosheath Jetâ€Driven Bow Waves. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027710.	2.4	11
38	Possible coexistence of kinetic Alfv \tilde{A} ©n and ion Bernstein modes in sub-ion scale compressive turbulence in the solar wind. Physical Review Research, 2020, 2, .	3.6	9
39	Magnetometer in-flight offset accuracy for the BepiColombo spacecraft. Annales Geophysicae, 2020, 38, 823-832.	1.6	7
40	Maximum-variance gradiometer technique for removal of spacecraft-generated disturbances from magnetic field data. Geoscientific Instrumentation, Methods and Data Systems, 2020, 9, 451-469.	1.6	10
41	Jets in the magnetosheath: IMF control of where they occur. Annales Geophysicae, 2019, 37, 689-697.	1.6	30
42	A Statistical Study on the Properties of Dips Ahead of Dipolarization Fronts Observed by MMS. Journal of Geophysical Research: Space Physics, 2019, 124, 139-150.	2.4	20
43	Advanced calibration of magnetometers on spin-stabilized spacecraft based on parameter decoupling. Geoscientific Instrumentation, Methods and Data Systems, 2019, 8, 63-76.	1.6	9
44	The Space Physics Environment Data Analysis System (SPEDAS). Space Science Reviews, 2019, 215, 9.	8.1	332
45	Direct observations of a surface eigenmode of the dayside magnetopause. Nature Communications, 2019, 10, 615.	12.8	63
46	Dipolarization Fronts: Tangential Discontinuities? On the Spatial Range of Validity of the MHD Jump Conditions. Journal of Geophysical Research: Space Physics, 2019, 124, 9963-9975.	2.4	10
47	How many solar wind data are sufficient for accurate fluxgate magnetometer offset determinations?. Geoscientific Instrumentation, Methods and Data Systems, 2019, 8, 285-291.	1.6	11
48	The Properties of Lion Roars and Electron Dynamics in Mirror Mode Waves Observed by the Magnetospheric MultiScale Mission. Journal of Geophysical Research: Space Physics, 2018, 123, 93-103.	2.4	26
49	In Situ Observations of a Magnetosheath Highâ€Speed Jet Triggering Magnetopause Reconnection. Geophysical Research Letters, 2018, 45, 1732-1740.	4.0	66
50	On Multiple Hallâ€Like Electron Currents and Tripolar Guide Magnetic Field Perturbations During Kelvinâ€Helmholtz Waves. Journal of Geophysical Research: Space Physics, 2018, 123, 1305-1324.	2.4	10
51	Investigating the anatomy of magnetosheath jets – MMS observations. Annales Geophysicae, 2018, 36, 655-677.	1.6	15
52	Plasma flow patterns in and around magnetosheath jets. Annales Geophysicae, 2018, 36, 695-703.	1.6	9
53	First observations of magnetic holes deep within the coma of a comet. Astronomy and Astrophysics, 2018, 618, A114.	5.1	24
54	Multiscale Currents Observed by MMS in the Flow Braking Region. Journal of Geophysical Research: Space Physics, 2018, 123, 1260-1278.	2.4	32

#	Article	IF	CITATIONS
55	How Accurately Can We Measure the Reconnection Rate <i>E</i> _{<i>M</i>} <for 11="" 123,="" 2017?.="" 2018,="" 9130-9149.<="" diffusion="" event="" geophysical="" journal="" july="" mms="" of="" physics,="" region="" research:="" space="" th="" the=""><th>2.4</th><th>64</th></for>	2.4	64
56	Enhanced Escape of Spacecraft Photoelectrons Caused by Langmuir and Upper Hybrid Waves. Journal of Geophysical Research: Space Physics, 2018, 123, 7534-7553.	2.4	14
57	Magnetosheath jet properties and evolution as determined by a global hybrid-Vlasov simulation. Annales Geophysicae, 2018, 36, 1171-1182.	1.6	26
58	Jets Downstream of Collisionless Shocks. Space Science Reviews, 2018, 214, 1.	8.1	101
59	The Role of the Parallel Electric Field in Electronâ€Scale Dissipation at Reconnecting Currents in the Magnetosheath. Journal of Geophysical Research: Space Physics, 2018, 123, 6533-6547.	2.4	40
60	Determining the Mode, Frequency, and Azimuthal Wave Number of ULF Waves During a HSS and Moderate Geomagnetic Storm. Journal of Geophysical Research: Space Physics, 2018, 123, 6457-6477.	2.4	23
61	Impacts of Magnetosheath Highâ€Speed Jets on the Magnetosphere and Ionosphere Measured by Optical Imaging and Satellite Observations. Journal of Geophysical Research: Space Physics, 2018, 123, 4879-4894.	2.4	41
62	New Insights into the Nature of Turbulence in the Earth's Magnetosheath Using Magnetospheric MultiScale Mission Data. Astrophysical Journal, 2018, 859, 127.	4.5	23
63	Fieldâ€Aligned Currents Originating From the Magnetic Reconnection Region: Conjugate MMSâ€ARTEMIS Observations. Geophysical Research Letters, 2018, 45, 5836-5844.	4.0	9
64	Magnetospheric Multiscale Observations of Electron Vortex Magnetic Hole in the Turbulent Magnetosheath Plasma. Astrophysical Journal Letters, 2017, 836, L27.	8.3	85
65	Electron Heating at Kinetic Scales in Magnetosheath Turbulence. Astrophysical Journal, 2017, 836, 247.	4.5	50
66	The nonlinear behavior of whistler waves at the reconnecting dayside magnetopause as observed by the Magnetospheric Multiscale mission: A case study. Journal of Geophysical Research: Space Physics, 2017, 122, 5487-5501.	2.4	22
67	Global observations of magnetospheric highâ€ <i>m</i> poloidal waves during the 22 June 2015 magnetic storm. Geophysical Research Letters, 2017, 44, 3456-3464.	4.0	43
68	Structure, force balance, and topology of Earth's magnetopause. Science, 2017, 356, 960-963.	12.6	10
69	Fluxgate magnetometer offset vector determination by the 3D mirror mode method. Monthly Notices of the Royal Astronomical Society, 2017, 469, S675-S684.	4.4	17
70	MMS Observation of Magnetic Reconnection in the Turbulent Magnetosheath. Journal of Geophysical Research: Space Physics, 2017, 122, 11,442.	2.4	73
71	Ultralow Frequency Waves Deep Inside the Inner Magnetosphere Driven by Dipolarizing Flux Bundles. Journal of Geophysical Research: Space Physics, 2017, 122, 10,112.	2.4	16
72	Lower Hybrid Drift Waves and Electromagnetic Electron Spaceâ€Phase Holes Associated With Dipolarization Fronts and Fieldâ€Aligned Currents Observed by the Magnetospheric Multiscale Mission During a Substorm. Journal of Geophysical Research: Space Physics, 2017, 122, 12,236.	2.4	31

#	Article	IF	Citations
73	Simultaneous Remote Observations of Intense Reconnection Effects by DMSP and MMS Spacecraft During a Storm Time Substorm. Journal of Geophysical Research: Space Physics, 2017, 122, 10891-10909.	2.4	17
74	Magnetosheath Highâ€Speed Jets: Internal Structure and Interaction With Ambient Plasma. Journal of Geophysical Research: Space Physics, 2017, 122, 10,157.	2.4	23
75	Near-Earth plasma sheet boundary dynamics during substorm dipolarization. Earth, Planets and Space, 2017, 69, 129.	2.5	15
76	Occurrence rate of dipolarization fronts in the plasma sheet: Cluster observations. Annales Geophysicae, 2017, 35, 1015-1022.	1.6	6
77	The Magnetospheric Multiscale Magnetometers. , 2017, , 189-256.		15
78	Spin axis offset calibration on THEMIS using mirror modes. Annales Geophysicae, 2017, 35, 117-121.	1.6	4
79	The Electron Drift Instrument for MMS. , 2017, , 283-305.		0
80	The FIELDS Instrument Suite on MMS: Scientific Objectives, Measurements, and Data Products. , 2017, , $105-135$.		3
81	On determining fluxgate magnetometer spin axis offsets from mirror mode observations. Annales Geophysicae, 2016, 34, 759-766.	1.6	16
82	Optimized merging of search coil and fluxgate data for MMS. Geoscientific Instrumentation, Methods and Data Systems, 2016, 5, 521-530.	1.6	22
83	Magnetopause erosion during the 17 March 2015 magnetic storm: Combined fieldâ€aligned currents, auroral oval, and magnetopause observations. Geophysical Research Letters, 2016, 43, 2396-2404.	4.0	36
84	Electron jet of asymmetric reconnection. Geophysical Research Letters, 2016, 43, 5571-5580.	4.0	66
85	Electron scale structures and magnetic reconnection signatures in the turbulent magnetosheath. Geophysical Research Letters, 2016, 43, 5969-5978.	4.0	92
86	Geoeffective jets impacting the magnetopause are very common. Journal of Geophysical Research: Space Physics, 2016, 121, 3240-3253.	2.4	54
87	Observations of largeâ€amplitude, parallel, electrostatic waves associated with the Kelvinâ€Helmholtz instability by the magnetospheric multiscale mission. Geophysical Research Letters, 2016, 43, 8859-8866.	4.0	26
88	Transient, smallâ€scale fieldâ€aligned currents in the plasma sheet boundary layer during storm time substorms. Geophysical Research Letters, 2016, 43, 4841-4849.	4.0	30
89	Wave telescope technique for MMS magnetometer. Geophysical Research Letters, 2016, 43, 4774-4780.	4.0	15
90	Steepening of waves at the duskside magnetopause. Geophysical Research Letters, 2016, 43, 7373-7380.	4.0	14

#	Article	IF	Citations
91	MMS observations of ionâ€scale magnetic island in the magnetosheath turbulent plasma. Geophysical Research Letters, 2016, 43, 7850-7858.	4.0	53
92	Force balance at the magnetopause determined with MMS: Application to flux transfer events. Geophysical Research Letters, 2016, 43, 11,941.	4.0	27
93	Multispacecraft analysis of dipolarization fronts and associated whistler wave emissions using MMS data. Geophysical Research Letters, 2016, 43, 7279-7286.	4.0	49
94	A comparative study of dipolarization fronts at MMS and Cluster. Geophysical Research Letters, 2016, 43, 6012-6019.	4.0	37
95	Electrodynamic context of magnetopause dynamics observed by magnetospheric multiscale. Geophysical Research Letters, 2016, 43, 5988-5996.	4.0	10
96	Whistler mode waves and Hall fields detected by MMS during a dayside magnetopause crossing. Geophysical Research Letters, 2016, 43, 5943-5952.	4.0	44
97	Observations of whistler mode waves with nonlinear parallel electric fields near the dayside magnetic reconnection separatrix by the Magnetospheric Multiscale mission. Geophysical Research Letters, 2016, 43, 5909-5917.	4.0	61
98	Rippled Quasiperpendicular Shock Observed by the Magnetospheric Multiscale Spacecraft. Physical Review Letters, 2016, 117, 165101.	7.8	87
99	The Electron Drift Instrument for MMS. Space Science Reviews, 2016, 199, 283-305.	8.1	52
100	The FIELDS Instrument Suite on MMS: Scientific Objectives, Measurements, and Data Products. Space Science Reviews, 2016, 199, 105-135.	8.1	390
101	The Magnetospheric Multiscale Magnetometers. Space Science Reviews, 2016, 199, 189-256.	8.1	896
102	The Magnetospheric Multiscale Magnetometers. , 2016, 199, 189.		1
103	Mirror mode waves in Venus's magnetosheath: solar minimum vs. solar maximum. Annales Geophysicae, 2016, 34, 1099-1108.	1.6	29
104	Two states of magnetotail dipolarization fronts: A statistical study. Journal of Geophysical Research: Space Physics, 2015, 120, 1096-1108.	2.4	29
105	Frequency variability of standing Alfv \tilde{A} @n waves excited by fast mode resonances in the outer magnetosphere. Geophysical Research Letters, 2015, 42, 10,150.	4.0	17
106	The global structure and time evolution of dayside magnetopause surface eigenmodes. Geophysical Research Letters, 2015, 42, 2594-2602.	4.0	29
107	What frequencies of standing surface waves can the subsolar magnetopause support?. Journal of Geophysical Research: Space Physics, 2015, 120, 3632-3646.	2.4	16
108	Alternative interpretation of results from Kelvinâ€Helmholtz vortex identification criteria. Geophysical Research Letters, 2014, 41, 244-250.	4.0	9

#	Article	IF	CITATIONS
109	Mirror mode structures near Venus and Comet P/Halley. Annales Geophysicae, 2014, 32, 651-657.	1.6	33
110	Flux-gate magnetometer spin axis offset calibration using the electron drift instrument. Measurement Science and Technology, 2014, 25, 105008.	2.6	14
111	Interinstrument calibration using magnetic field data from the flux-gate magnetometer (FGM) and electron drift instrument (EDI) onboard Cluster. Geoscientific Instrumentation, Methods and Data Systems, 2014, 3, 1-11.	1.6	17
112	Electron fluxes and pitchâ€angle distributions at dipolarization fronts: THEMIS multipoint observations. Journal of Geophysical Research: Space Physics, 2013, 118, 744-755.	2.4	80
113	The role of transient ion foreshock phenomena in driving Pc5 ULF wave activity. Journal of Geophysical Research: Space Physics, 2013, 118, 299-312.	2.4	94
114	A new method for solving the MHD equations in the magnetosheath. Annales Geophysicae, 2013, 31, 419-437.	1.6	13
115	Anti-sunward high-speed jets in the subsolar magnetosheath. Annales Geophysicae, 2013, 31, 1877-1889.	1.6	99
116	On the generation of magnetosheath highâ€'speed jets by bow shock ripples. Journal of Geophysical Research: Space Physics, 2013, 118, 7237-7245.	2.4	68
117	Magnetopause surface waves: THEMIS observations compared to MHD theory. Journal of Geophysical Research: Space Physics, 2013, 118, 1483-1499.	2.4	23
118	Lunar precursor effects in the solar wind and terrestrial magnetosphere. Journal of Geophysical Research, 2012, 117 , .	3.3	31
119	Periodic black auroral patches at the dawnside dipolarization front during a substorm. Journal of Geophysical Research, $2011,116,.$	3.3	7
120	A THEMIS multicase study of dipolarization fronts in the magnetotail plasma sheet. Journal of Geophysical Research, 2011, 116, .	3.3	305
121	Transient Pc3 wave activity generated by a hot flow anomaly: Cluster, Rosetta, and ground-based observations. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	38
122	First remote measurements of lunar surface charging from ARTEMIS: Evidence for nonmonotonic sheath potentials above the dayside surface. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	26
123	First Results from ARTEMIS, a New Two-Spacecraft Lunar Mission: Counter-Streaming Plasma Populations in the Lunar Wake. Space Science Reviews, 2011, 165, 93-107.	8.1	44
124	First lunar wake passage of ARTEMIS: Discrimination of wake effects and solar wind fluctuations by 3D hybrid simulations. Planetary and Space Science, 2011, 59, 661-671.	1.7	44
125	Modelling of spacecraft spin period during eclipse. Annales Geophysicae, 2011, 29, 875-882.	1.6	6
126	Properties of standing Kruskal-Schwarzschild-modes at the magnetopause. Annales Geophysicae, 2011, 29, 1793-1807.	1.6	39

#	Article	IF	CITATIONS
127	First Results from ARTEMIS, a New Two-Spacecraft Lunar Mission: Counter-Streaming Plasma Populations in the Lunar Wake., 2011,, 93-107.		4
128	The THEMIS Fluxgate Magnetometer. , 2009, , 235-264.		47
129	Anomalous magnetosheath flows and distorted subsolar magnetopause for radial interplanetary magnetic fields. Geophysical Research Letters, 2009, 36, .	4.0	81
130	Standing Alfvén waves at the magnetopause. Geophysical Research Letters, 2009, 36, .	4.0	45
131	Statistical study of the magnetopause motion: First results from THEMIS. Journal of Geophysical Research, 2009, 114 , .	3.3	23
132	THEMIS observations of duskside compressional Pc5 waves. Journal of Geophysical Research, 2009, 114,	3.3	25
133	Surface waves and field line resonances: A THEMIS case study. Journal of Geophysical Research, 2009, 114, .	3.3	51
134	Magnetopause surface oscillation frequencies at different solar wind conditions. Annales Geophysicae, 2009, 27, 4521-4532.	1.6	32
135	The THEMIS Fluxgate Magnetometer. Space Science Reviews, 2008, 141, 235-264.	8.1	1,050
136	Magnetospheric quasi-static response to the dynamic magnetosheath: A THEMIS case study. Geophysical Research Letters, 2008, 35, .	4.0	22
137	Statistical analysis of ground based magnetic field measurements with the field line resonance detector. Annales Geophysicae, 2008, 26, 3477-3489.	1.6	20
138	A Case for Electron-Astrophysics. Experimental Astronomy, 0, , 1.	3.7	11
139	Exploring solar-terrestrial interactions via multiple imaging observers. Experimental Astronomy, 0, , 1.	3.7	3