
Hyun Seok Song

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4839416/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ultrasensitive Flexible Graphene Based Field-Effect Transistor (FET)-Type Bioelectronic Nose. Nano Letters, 2012, 12, 5082-5090.	9.1	312
2	Self-assembled RNA-triple-helix hydrogel scaffoldÂfor microRNA modulation in the tumourÂmicroenvironment. Nature Materials, 2016, 15, 353-363.	27.5	231
3	Polypyrrole Nanotubes Conjugated with Human Olfactory Receptors: Highâ€Performance Transducers for FETâ€Type Bioelectronic Noses. Angewandte Chemie - International Edition, 2009, 48, 2755-2758.	13.8	195
4	Singleâ€Carbonâ€Atomicâ€Resolution Detection of Odorant Molecules using a Human Olfactory Receptorâ€based Bioelectronic Nose. Advanced Materials, 2009, 21, 91-94.	21.0	171
5	Conducting Nanomaterial Sensor Using Natural Receptors. Chemical Reviews, 2019, 119, 36-93.	47.7	159
6	Dual-Color Emissive Upconversion Nanocapsules for Differential Cancer Bioimaging <i>In Vivo</i> . ACS Nano, 2016, 10, 1512-1521.	14.6	157
7	Nanovesicle-based bioelectronic nose platform mimicking human olfactory signal transduction. Biosensors and Bioelectronics, 2012, 35, 335-341.	10.1	149
8	An Ultrasensitive, Selective, Multiplexed Superbioelectronic Nose That Mimics the Human Sense of Smell. Nano Letters, 2015, 15, 6559-6567.	9.1	129
9	Recent advances in electronic and bioelectronic noses and their biomedical applications. Enzyme and Microbial Technology, 2011, 48, 427-437.	3.2	125
10	3D hydrogel scaffold doped with 2D graphene materials for biosensors and bioelectronics. Biosensors and Bioelectronics, 2017, 89, 187-200.	10.1	112
11	Mimicking the human smell sensing mechanism with an artificial nose platform. Biomaterials, 2012, 33, 1722-1729.	11.4	106
12	Human Taste Receptor-Functionalized Field Effect Transistor as a Human-Like Nanobioelectronic Tongue. Nano Letters, 2013, 13, 172-178.	9.1	104
13	Largeâ€Scale Graphene Micropattern Nanoâ€biohybrids: Highâ€Performance Transducers for FETâ€Type Flexible Fluidic HIV Immunoassays. Advanced Materials, 2013, 25, 4177-4185.	21.0	97
14	Bioelectronic nose with high sensitivity and selectivity using chemically functionalized carbon nanotube combined with human olfactory receptor. Journal of Biotechnology, 2012, 157, 467-472.	3.8	96
15	Duplex Bioelectronic Tongue for Sensing Umami and Sweet Tastes Based on Human Taste Receptor Nanovesicles. ACS Nano, 2016, 10, 7287-7296.	14.6	78
16	Bioelectronic Tongue Using Heterodimeric Human Taste Receptor for the Discrimination of Sweeteners with Human-like Performance. ACS Nano, 2014, 8, 9781-9789.	14.6	75
17	"Bioelectronic super-taster―device based on taste receptor-carbon nanotube hybrid structures. Lab on A Chip, 2011, 11, 2262.	6.0	71
18	Nanodisc-Based Bioelectronic Nose Using Olfactory Receptor Produced in <i>Escherichia coli</i> for the Assessment of the Death-Associated Odor Cadaverine, ACS Nano, 2017, 11, 11847-11855.	14.6	59

HYUN SEOK SONG

#	Article	IF	CITATIONS
19	Label-free brain tissue imaging using large-area terahertz metamaterials. Biosensors and Bioelectronics, 2020, 170, 112663.	10.1	59
20	Ultrasensitive and Selective Recognition of Peptide Hormone Using Close-Packed Arrays of hPTHR-Conjugated Polymer Nanoparticles. ACS Nano, 2012, 6, 5549-5558.	14.6	52
21	High-performance bioelectronic tongue using ligand binding domain T1R1 VFT for umami taste detection. Biosensors and Bioelectronics, 2018, 117, 628-636.	10.1	49
22	Human dopamine receptor nanovesicles for gate-potential modulators in high-performance field-effect transistor biosensors. Scientific Reports, 2014, 4, 4342.	3.3	47
23	Humidityâ€Tolerant Singleâ€Stranded DNAâ€Functionalized Graphene Probe for Medical Applications of Exhaled Breath Analysis. Advanced Functional Materials, 2017, 27, 1700068.	14.9	47
24	Expression, Solubilization and Purification of a Human Olfactory Receptor from Escherichia coli. Current Microbiology, 2009, 59, 309-314.	2.2	46
25	Personalizing Biomaterials for Precision Nanomedicine Considering the Local Tissue Microenvironment. Advanced Healthcare Materials, 2015, 4, 1584-1599.	7.6	44
26	Highly selective and sensitive detection of neurotransmitters using receptor-modified single-walled carbon nanotube sensors. Nanotechnology, 2013, 24, 285501.	2.6	40
27	High-performance portable graphene field-effect transistor device for detecting Gram-positive and -negative bacteria. Biosensors and Bioelectronics, 2020, 167, 112514.	10.1	39
28	Ultrasensitive, Selective, and Highly Stable Bioelectronic Nose That Detects the Liquid and Gaseous Cadaverine. Analytical Chemistry, 2019, 91, 12181-12190.	6.5	36
29	Real-time monitoring of geosmin based on an aptamer-conjugated graphene field-effect transistor. Biosensors and Bioelectronics, 2021, 174, 112804.	10.1	30
30	Integration of biomolecules and nanomaterials: Towards highly selective and sensitive biosensors. Biotechnology Journal, 2011, 6, 1310-1316.	3.5	29
31	In-situ food spoilage monitoring using a wireless chemical receptor-conjugated graphene electronic nose. Biosensors and Bioelectronics, 2022, 200, 113908.	10.1	27
32	Detection and discrimination of SARS-CoV-2 spike protein-derived peptides using THz metamaterials. Biosensors and Bioelectronics, 2022, 202, 113981.	10.1	27
33	Wireless portable bioelectronic nose device for multiplex monitoring toward food freshness/spoilage. Biosensors and Bioelectronics, 2022, 215, 114551.	10.1	27
34	Dopamine Receptor D1 Agonism and Antagonism Using a Field-Effect Transistor Assay. ACS Nano, 2017, 11, 5950-5959.	14.6	25
35	Purification and functional reconstitution of human olfactory receptor expressed in Escherichia coli. Biotechnology and Bioprocess Engineering, 2015, 20, 423-430.	2.6	18
36	Ultrasensitive terahertz molecule sensor for observation of photoinduced conformational change in rhodopsin-nanovesicles. Sensors and Actuators B: Chemical, 2018, 273, 1371-1375.	7.8	15

3

HYUN SEOK SONG

#	Article	IF	CITATIONS
37	Screening of cellâ€penetrating peptides using mRNA display. Biotechnology Journal, 2012, 7, 387-396.	3.5	13
38	Artificial Rod and Cone Photoreceptors with Human‣ike Spectral Sensitivities. Advanced Materials, 2018, 30, e1706764.	21.0	12
39	Clinical proteomic analysis of scrub typhus infection. Clinical Proteomics, 2018, 15, 6.	2.1	10
40	Nanovesicle-based platform for the electrophysiological monitoring of aquaporin-4 and the real-time detection of its antibody. Biosensors and Bioelectronics, 2014, 61, 140-146.	10.1	6
41	Photosensitive Nanodiscs Composed of Human Photoreceptors for Refractive Index Modulation at Selective Wavelengths. Nano Letters, 2022, 22, 6825-6832.	9.1	4
42	Optical measurement of peptide hormone using artificial hormone receptor cell-line. , 2013, , .		0
43	Production of Olfactory Receptors and Nanovesicles Using Heterologous Cell Systems for Bioelectronic Nose. , 2014, , 145-170.		0