Carlos L Pieck

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4839380/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Optimization of the Metal Phase Composition of Ir–Pd/SiO2–Al2O3 Catalysts to Increase Thiotolerance in Selective Ring Opening of Decalin. Topics in Catalysis, 2022, 65, 1209-1217.	2.8	1
2	Influence of the Ir content and the support on the thiotolerance of the Ir/ <scp>SiO₂â€Al₂O₃</scp> catalysts for selective ring opening of decalin. Canadian Journal of Chemical Engineering, 2021, 99, 1146-1157.	1.7	4
3	Selective hydrogenation of oleic acid to fatty alcohols over a Rh–Sn–B/Al2O3 catalyst: kinetics and optimal reaction conditions. Reaction Chemistry and Engineering, 2021, 6, 726-746.	3.7	3
4	Ruâ€Pt catalysts supported on Al ₂ O ₃ and SiO ₂ ─Al ₂ O ₃ for the selective ring opening of naphthenes. Canadian Journal of Chemical Engineering, 2020, 98, 749-756.	1.7	6
5	Pt–Ir/Al2O3 catalysts for the ring opening of naphthenes. Performance as a function of time. Reaction Kinetics, Mechanisms and Catalysis, 2019, 127, 875-886.	1.7	4
6	Selective hydrogenation of oleic acid to fatty alcohols on Rh-Sn-B/Al2O3 catalysts. Influence of Sn content. Applied Catalysis A: General, 2019, 584, 117149.	4.3	19
7	Deactivation study of Ruâ€&nâ€B/Al 2 O 3 catalysts during selective hydrogenation of methyl oleate to fatty alcohol. Canadian Journal of Chemical Engineering, 2019, 97, 2333-2339.	1.7	5
8	Ru‣nâ€B/TiO ₂ catalysts for methyl oleate selective hydrogenation. Influence of the preparation method and the chlorine content. Journal of Chemical Technology and Biotechnology, 2019, 94, 982-991.	3.2	7
9	Selective ring opening of decalin on Rh-Pd/SiO2-Al2O3 bifunctional systems: Catalytic performance and deactivation. Fuel Processing Technology, 2018, 177, 6-15.	7.2	7
10	Selective hydrogenation of fatty acids and methyl esters of fatty acids to obtain fatty alcohols–a review. Journal of Chemical Technology and Biotechnology, 2017, 92, 27-42.	3.2	64
11	Pretreatment Temperature Influence on the Selective Ring Opening of Decalin on Pt–Ir/TiO2 Catalysts. Catalysis Letters, 2017, 147, 758-764.	2.6	4
12	Influence of Support Acidity and Ir Content on the Selective Ring Opening of Decalin over Ir/SiO ₂ –Al ₂ O ₃ . Energy & Fuels, 2017, 31, 5461-5471.	5.1	26
13	Influence of rhodium content on the behavior of Rh/SiO ₂ –Al ₂ O ₃ catalysts for selective ring opening of decalin. RSC Advances, 2017, 7, 46803-46811.	3.6	13
14	Influence of the metallic content on Pt-Ir/Nb 2 O 5 catalysts for decalin selective ring opening. Catalysis Today, 2017, 289, 53-61.	4.4	14
15	Controlled preparation and characterization of Pt-Rh/Al2O3 bimetallic catalysts for reactions in reducing conditions. Applied Catalysis A: General, 2016, 517, 81-90.	4.3	13
16	Ru-Sn-B/Al2O3Catalysts for Selective Hydrogenation of Methyl Oleate: Influence of the Ru/Sn Ratio. Journal of Chemistry, 2015, 2015, 1-7.	1.9	5
17	Selective ring opening of methylcyclohexane and decalin over Rh–Pd supported catalysts: Effect of the preparation method. Fuel Processing Technology, 2015, 140, 180-187.	7.2	12
18	Influence of the support on the selective ring opening of methylcyclohexane and decalin catalyzed by Rh–Pd catalysts. Journal of Molecular Catalysis A, 2015, 398, 203-214.	4.8	19

CARLOS L PIECK

#	Article	IF	CITATIONS
19	Influence of the Support Material on the Activity and Selectivity of Ru–Sn–B Catalysts for the Selective Hydrogenation of Methyl Oleate. Industrial & Engineering Chemistry Research, 2015, 54, 6845-6854.	3.7	22
20	Influence of Support Material on the Activity and Selectivity of Pt–Ir Catalysts for Ring Opening Reactions. Catalysis Letters, 2015, 145, 910-918.	2.6	8
21	Influence of the iron content on the arsenic adsorption capacity of Fe/GAC adsorbents. Journal of Environmental Chemical Engineering, 2014, 2, 927-934.	6.7	31
22	Influence of Na content on the catalytic properties of Pt-Ir/Al2O3 catalysts for selective ring opening of decalin. Applied Catalysis A: General, 2014, 480, 42-49.	4.3	20
23	Influence of the BrÃ,nsted acidity, SiO2/Al2O3 ratio and Rh–Pd content on the ring opening. Part II. Selective ring opening of methylcyclohexane. Applied Catalysis A: General, 2014, 469, 541-549.	4.3	14
24	Influence of Time and Temperature on the Regeneration of PtReIn/Al2O3 Naphtha Reforming Catalysts. Catalysis Letters, 2014, 144, 1178-1187.	2.6	7
25	Influence of the BrÃ,nsted acidity, SiO2/Al2O3 ratio and Rh–Pd content on the ring opening: Part I. Selective ring opening of decalin. Applied Catalysis A: General, 2014, 469, 532-540.	4.3	28
26	Influence of iridium content on the behavior of Pt-Ir/Al2O3 and Pt-Ir/TiO2 catalysts for selective ring of naphthenes. Applied Catalysis A: General, 2013, 453, 167-174.	4.3	34
27	Influence of Ge content on the activity of Ru–Ge–B/Al2O3 catalysts for selective hydrogenation of methyl oleate to oleyl alcohol. Catalysis Today, 2013, 213, 81-86.	4.4	13
28	Pt-Mg-Ir/Al2O3 and Pt-Ir/HY zeolite catalysts for SRO of decalin. Influence of Ir content and support acidity. Applied Catalysis A: General, 2013, 452, 48-56.	4.3	20
29	Influence of the operating conditions and kinetic analysis of the selective hydrogenation of oleic acid on Ru–Sn–B/Al2O3 catalysts. Applied Catalysis A: General, 2013, 467, 552-558.	4.3	18
30	Optimal Ir/Pt ratio for the ring opening of decalin in zeolite supported catalysts. Applied Catalysis A: General, 2012, 445-446, 195-203.	4.3	25
31	Influence of the operating conditions and kinetic analysis of the selective hydrogenation of methyl oleate on Ru–Sn–B/Al2O3 catalysts. Reaction Kinetics, Mechanisms and Catalysis, 2012, 107, 127-139.	1.7	11
32	Pt–Re–Ge/Al2O3 catalysts for n-octane reforming: Influence of the order of addition of the metal precursors. Applied Catalysis A: General, 2012, 419-420, 156-163.	4.3	17
33	Influence of gallium on the properties of Pt–Re/Al2O3 naphtha reforming catalysts. Applied Catalysis A: General, 2011, 407, 49-55.	4.3	15
34	Selective ring opening of decalin with Pt–Ir/Al2O3 catalyst prepared by catalytic reduction. Catalysis Today, 2011, 172, 177-182.	4.4	10
35	Influence of preparation method and boron addition on the metal function properties of RuSn catalysts for selective carbonyl hydrogenation. Journal of Chemical Technology and Biotechnology, 2011, 86, 447-453.	3.2	23
36	Catalytic activity of Pt-Re-Pb/Al2O3 naphtha reforming catalysts. Journal of Chemical Technology and Biotechnology, 2011, 86, 1198-1204.	3.2	7

CARLOS L PIECK

#	Article	IF	CITATIONS
37	Modelling diffusion and adsorption of As species in Fe/GAC adsorbent beds. Journal of Chemical Technology and Biotechnology, 2011, 86, 1256-1264.	3.2	11
38	Influence of Indium Content on the Properties of Pt–Re/Al2O3 Naphtha Reforming Catalysts. Catalysis Letters, 2010, 136, 45-51.	2.6	20
39	O2 and O3 regeneration of PtReSn/Al2O3 and PtReGe/Al2O3 naphtha reforming catalysts prepared by catalytic reduction. Applied Catalysis A: General, 2010, 388, 272-277.	4.3	6
40	Preparation and characterization oF Ru-Sn/Al2O3 catalysts for the hydrogenation of fatty acid methyl esters. Quimica Nova, 2010, 33, 269-272.	0.3	10
41	Influence of tin addition by redox reaction in different media on the catalytic properties of Pt-Re/Al2O3 naphtha reforming catalysts. Applied Catalysis A: General, 2009, 370, 34-41.	4.3	14
42	Influence of additives on the Pt metal activity of naphtha reforming catalysts. Applied Catalysis A: General, 2009, 354, 161-168.	4.3	53
43	Catalytic Properties of Ptâ^'Re/Al ₂ O ₃ Naphtha-Reforming Catalysts Modified by Germanium Introduced by Redox Reaction at Different pH Values. Industrial & Engineering Chemistry Research, 2009, 48, 3771-3778.	3.7	13
44	Modification of Multimetallic Naphtha-Reforming Catalysts by Indium Addition. Industrial & Engineering Chemistry Research, 2009, 48, 671-676.	3.7	21
45	Propane Oxidative Dehydrogenation on V–Sb/ZrO2 Catalysts. Catalysis Letters, 2008, 122, 252-258.	2.6	13
46	Naphtha reforming Pt-Re-Ge/γ-Al2O3 catalysts prepared by catalytic reduction. Catalysis Today, 2008, 133-135, 13-19.	4.4	13
47	Analysis of coke deposition and study of the variables of regeneration and rejuvenation of naphtha reforming trimetallic catalysts. Catalysis Today, 2008, 133-135, 870-878.	4.4	21
48	Influence of hydrothermal aging on the catalytic activity of sulfated zirconia. Applied Catalysis A: General, 2008, 348, 173-182.	4.3	16
49	Influence of the pretreatment method on the properties of trimetallic Pt–Ir–Ge/Al2O3 prepared by catalytic reduction. Applied Catalysis A: General, 2007, 332, 37-45.	4.3	10
50	Preparation of trimetallic Pt–Re–Ge/Al2O3 and Pt–Ir–Ge/Al2O3 naphtha reforming catalysts by surface redox reaction. Applied Catalysis A: General, 2007, 319, 210-217.	4.3	32
51	Hydroisomerization of Benzene-Containing Paraffinic Feedstocks over Pt/WO3â^'ZrO2Catalysts. Energy & Fuels, 2006, 20, 1791-1798.	5.1	27
52	Effect of the method of addition of Ge on the catalytic properties of Pt–Re/Al2O3 and Pt–Ir/Al2O3 naphtha reforming catalysts. Catalysis Communications, 2006, 7, 627-632.	3.3	17
53	Depression of the Cloud Point of Biodiesel by Reaction over Solid Acids. Energy & Fuels, 2006, 20, 2721-2726.	5.1	39
54	Influence of the Axial Dispersion on the Performance of Tubular Reactors during the Noncatalytic Supercritical Transesterification of Triglycerides. Energy & Fuels, 2006, 20, 2642-2647.	5.1	28

CARLOS L PIECK

#	Article	IF	CITATIONS
55	Differences in coke burning-off from Pt–Sn/Al2O3 catalyst with oxygen or ozone. Applied Catalysis A: General, 2005, 278, 173-180.	4.3	40
56	Role of Sn in Pt–Re–Sn/Al2O3–Cl catalysts for naphtha reforming. Catalysis Today, 2005, 107-108, 643-650.	4.4	39
57	Metal dispersion and catalytic activity of trimetallic Pt-Re-Sn/Al2O3 naphtha reforming catalysts. Catalysis Today, 2005, 107-108, 637-642.	4.4	41
58	Characterization of Transition-Metal Oxides Promoted with Oxoanions by Means of Test Reactions. Industrial & Engineering Chemistry Research, 2005, 44, 1716-1721.	3.7	21
59	Sulfur Poisoning of Bi- and Trimetallic γ-Al2O3-Supported Pt, Re, and Sn Catalysts. Industrial & Engineering Chemistry Research, 2004, 43, 1222-1226.	3.7	13
60	Tetragonal structure, anionic vacancies and catalytic activity of SO42â^'-ZrO2 catalysts for n-butane isomerization. Applied Catalysis A: General, 2002, 230, 137-151.	4.3	70
61	Pt/SO42â^'-ZrO2 catalysts prepared from Pt organometallic compounds. Applied Catalysis A: General, 2002, 232, 169-180.	4.3	10
62	Effect Of The Solvent Used During Preparation On The Properties Of Pt/Al2O3And Ptâ^'Sn/Al2O3Catalysts. Industrial & Engineering Chemistry Research, 2001, 40, 5557-5563.	3.7	21
63	Coking of SO42â^–ZrO2 Catalysts during Isomerization of n-Butane and Its Relation to the Reaction Mechanism. Journal of Catalysis, 1999, 187, 39-49.	6.2	34
64	Characterization of residual coke during burning. Industrial & Engineering Chemistry Research, 1992, 31, 1017-1021.	3.7	32
65	Sintering-redispersion of Pt-Re/Al2O3 during regeneration. Applied Catalysis, 1990, 62, 47-60.	0.8	18
66	Comparison of coke burning on catalysts coked in a commercial plant and in the laboratory. Industrial & Engineering Chemistry Research, 1989, 28, 1785-1788.	3.7	10
67	Selectivity of platinum-rhenium-sulfur/alumina-chlorine reforming catalyst as a function of feed composition. Industrial & Engineering Chemistry Research, 1988, 27, 1751-1754.	3.7	2