
Yong Guo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4839350/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hydrogenolysis Cleavage of the C _{sp2} –C _{sp3} Bond over a Metal-Free NbOPO ₄ Catalyst. ACS Catalysis, 2022, 12, 4806-4812.	11.2	14
2	Dehydrogenation of dodecahydro-N-ethylcarbazole over spinel supporting catalyst in a continuous flow fixed bed reactor. Fuel, 2022, 321, 124034.	6.4	12
3	Highly selective synthesis of primary amines from amide over Ruâ€Nb ₂ O ₅ catalysts. Chemistry - an Asian Journal, 2022, 17, .	3.3	1
4	NbO _{<i>x</i>} -Based Catalysts for the Activation of C–O and C–C Bonds in the Valorization of Waste Carbon Resources. Accounts of Chemical Research, 2022, 55, 1301-1312.	15.6	30
5	Identifying the realistic catalyst for aqueous phase reforming of methanol over Pt supported by lanthanum nickel perovskite catalyst. Applied Catalysis B: Environmental, 2022, 313, 121435.	20.2	17
6	A Highly Efficient Nickel Phosphate Electrocatalyst for the Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid. ACS Sustainable Chemistry and Engineering, 2022, 10, 5538-5547.	6.7	12
7	High-efficient production of fatty alcohol via hydrogenation of fatty acid over Cu-NbOx/SBA-15 catalyst. Catalysis Today, 2022, 405-406, 221-226.	4.4	8
8	Size effect of Ru particles on the self-reforming-driven hydrogenolysis of a lignin model compound. Catalysis Science and Technology, 2022, 12, 5143-5151.	4.1	3
9	A unique Co@CoO catalyst for hydrogenolysis of biomass-derived 5-hydroxymethylfurfural to 2,5-dimethylfuran. Nature Communications, 2022, 13, .	12.8	66
10	Boosting 2,5-Furandicarboxylic acid production via coating carbon over CeO2 in a Pt catalyst. Industrial Crops and Products, 2022, 186, 115168.	5.2	6
11	Towards the Circular Economy: Converting Aromatic Plastic Waste Back to Arenes over a Ru/Nb ₂ O ₅ Catalyst. Angewandte Chemie - International Edition, 2021, 60, 5527-5535.	13.8	169
12	Towards the Circular Economy: Converting Aromatic Plastic Waste Back to Arenes over a Ru/Nb 2 O 5 Catalyst. Angewandte Chemie, 2021, 133, 5587-5595.	2.0	42
13	Syngas to light olefin synthesis over La doped Zn _x Al _y O _z composite and SAPO-34 hybrid catalysts. Catalysis Science and Technology, 2021, 11, 3231-3240.	4.1	10
14	Mechanisms of Caromatic-C bonds cleavage in lignin over NbOx-supported Ru catalyst. Journal of Catalysis, 2021, 394, 94-103.	6.2	25
15	H ₂ â€free Plastic Conversion: Converting PET back to BTX by Unlocking Hidden Hydrogen. ChemSusChem, 2021, 14, 4242-4250.	6.8	50
16	Unraveling the Role of Metal in M/NiAl ₂ O ₄ (M = Pt, Pd, Ru) Catalyst for the Self-Reforming-Driven Hydrogenolysis of Lignin. Industrial & Engineering Chemistry Research, 2021, 60, 11699-11706.	3.7	18
17	Plastic waste to drug intermediate: targeted cleavage of C–O bonds in polyphenylene oxide to 3,5-dimethyl phenol. Green Chemistry, 2021, 23, 9640-9645.	9.0	13
18	Selective production of ethylbenzene from lignin oil over FeOx modified Ru/Nb2O5 catalyst. Applied Catalysis B: Environmental, 2020, 260, 118143.	20.2	57

Yong Guo

#	Article	IF	CITATIONS
19	Chemicals from Lignin: A Review of Catalytic Conversion Involving Hydrogen. ChemSusChem, 2020, 13, 4181-4198.	6.8	126
20	Improved Performance of Nickel Boride by Phosphorus Doping as an Efficient Electrocatalyst for the Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid. Industrial & Engineering Chemistry Research, 2020, 59, 17348-17356.	3.7	42
21	Hydrogen-Free Production of 4-Alkylphenols from Lignin via Self-Reforming-Driven Depolymerization and Hydrogenolysis. ACS Catalysis, 2020, 10, 15197-15206.	11.2	57
22	Roles of niobium in the dehydrogenation of propane to propylene over a Pt/Nb-modified Al ₂ O ₃ catalyst. New Journal of Chemistry, 2020, 44, 20115-20121.	2.8	3
23	Highly efficient alloyed NiCu/Nb ₂ O ₅ catalyst for the hydrodeoxygenation of biofuel precursors into liquid alkanes. Catalysis Science and Technology, 2020, 10, 4256-4263.	4.1	22
24	Selective production of indane and its derivatives from lignin over a modified niobium-based catalyst. Chemical Communications, 2019, 55, 9391-9394.	4.1	31
25	Morphology-maintaining synthesis of NbN and its catalytic performance in epoxidation. Catalysis Science and Technology, 2019, 9, 4002-4009.	4.1	7
26	Highly efficient Nb2O5 catalyst for aldol condensation of biomass-derived carbonyl molecules to fuel precursors. Chinese Journal of Catalysis, 2019, 40, 1168-1177.	14.0	55
27	Catalytic Production of Value-Added Chemicals and Liquid Fuels from Lignocellulosic Biomass. CheM, 2019, 5, 2520-2546.	11.7	337
28	NiAl ₂ O ₄ Spinel Supported Pt Catalyst: High Performance and Origin in Aqueous-Phase Reforming of Methanol. ACS Catalysis, 2019, 9, 9671-9682.	11.2	105
29	Correlation of the catalytic performance with Nb2O5 surface properties in the hydrodeoxygenation of lignin model compound. Journal of Catalysis, 2019, 375, 202-212.	6.2	61
30	Breaking the Limit of Lignin Monomer Production via Cleavage of Interunit Carbon–Carbon Linkages. CheM, 2019, 5, 1521-1536.	11.7	167
31	Selective hydrodeoxygenation of lignin oil to valuable phenolics over Au/Nb ₂ O ₅ in water. Green Chemistry, 2019, 21, 3081-3090.	9.0	75
32	Depolymerization and hydrodeoxygenation of lignin to aromatic hydrocarbons with a Ru catalyst on a variety of Nb-based supports. Chinese Journal of Catalysis, 2019, 40, 609-617.	14.0	57
33	Catalytic and DRIFTS Studies of Pt-Based Bimetallic Alloy Catalysts in Aqueous-Phase Reforming of Glycerol. Industrial & Engineering Chemistry Research, 2019, 58, 2749-2758.	3.7	20
34	Boosting the utilization efficiency of glucose <i>via</i> a favored C–C coupling reaction. Green Chemistry, 2019, 21, 6236-6240.	9.0	7
35	Catalytic conversion of lignocellulosic biomass into hydrocarbons: A mini review. Catalysis Today, 2019, 319, 2-13.	4.4	142
36	Robinson Annulation-Directed Synthesis of Jet-Fuel-Ranged Alkylcyclohexanes from Biomass-Derived Chemicals. ACS Catalysis, 2018, 8, 3280-3285.	11.2	58

Yong Guo

#	Article	IF	CITATIONS
37	Contribution of Different NbOx Species in the Hydrodeoxygenation of 2,5-Dimethyltetrahydrofuran to Hexane. ACS Sustainable Chemistry and Engineering, 2018, 6, 13107-13113.	6.7	27
38	The critical role of CeO2 crystal-plane in controlling Pt chemical states on the hydrogenolysis of furfuryl alcohol to 1,2-pentanediol. Journal of Catalysis, 2018, 365, 420-428.	6.2	68
39	Catalytic Transformation of Lignocellulosic Biomass into Arenes, 5â€Hydroxymethylfurfural, and Furfural. ChemSusChem, 2018, 11, 2758-2765.	6.8	60
40	Synthesis of Renewable Lubricant Alkanes from Biomassâ€Derived Platform Chemicals. ChemSusChem, 2017, 10, 4102-4108.	6.8	36
41	Selective Oneâ€Pot Production of Highâ€Grade Dieselâ€Range Alkanes from Furfural and 2â€Methylfuran over Pd/NbOPO ₄ . ChemSusChem, 2017, 10, 747-753.	6.8	56
42	Hydrogen production by aqueous-phase reforming of glycerol over Ni-B catalysts. International Journal of Hydrogen Energy, 2012, 37, 227-234.	7.1	68
43	Effect of support's basic properties on hydrogen production in aqueous-phase reforming of glycerol and correlation between WGS and APR. Applied Energy, 2012, 92, 218-223.	10.1	113
44	Effective Production of Octane from Biomass Derivatives under Mild Conditions. ChemSusChem, 2011, 4, 1758-1761.	6.8	72