Victor Javier Cadarso Busto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4839155/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A novel optical waveguide microcantilever sensor for the detection of nanomechanical forces. Journal of Lightwave Technology, 2006, 24, 2132-2138.	2.7	90
2	Integrated hollow microneedle-optofluidic biosensor for therapeutic drug monitoring in sub-nanoliter volumes. Scientific Reports, 2016, 6, 29075.	1.6	76
3	Microfluidic Electrochemical Sensor for Cerebrospinal Fluid and Blood Dopamine Detection in a Mouse Model of Parkinson's Disease. Analytical Chemistry, 2020, 92, 12347-12355.	3.2	68
4	The emerging role of microfluidics in multi-material 3D bioprinting. Lab on A Chip, 2020, 20, 2044-2056.	3.1	59
5	SU-8 Optical Accelerometers. Journal of Microelectromechanical Systems, 2007, 16, 111-121.	1.7	51
6	High-resolution 1D moirés as counterfeit security features. Light: Science and Applications, 2013, 2, e86-e86.	7.7	45
7	Fabrication of epoxy spherical microstructures by controlled drop-on-demand inkjet printing. Journal of Micromechanics and Microengineering, 2012, 22, 074012.	1.5	44
8	Light spectral filtering based on spatial adiabatic passage. Light: Science and Applications, 2013, 2, e90-e90.	7.7	42
9	Precision Surface Microtopography Regulates Cell Fate via Changes to Actomyosin Contractility and Nuclear Architecture. Advanced Science, 2021, 8, 2003186.	5.6	41
10	Integrated Photonic Nanofences: Combining Subwavelength Waveguides with an Enhanced Evanescent Field for Sensing Applications. ACS Nano, 2016, 10, 778-785.	7.3	33
11	High-aspect-ratio nanoimprint process chains. Microsystems and Nanoengineering, 2017, 3, 17017.	3.4	32
12	Adiabatic Passage of Light in CMOS-Compatible Silicon Oxide Integrated Rib Waveguides. IEEE Photonics Technology Letters, 2012, 24, 536-538.	1.3	28
13	Reversible Light-Switching of Enzymatic Activity on Orthogonally Functionalized Polymer Brushes. ACS Applied Materials & Interfaces, 2017, 9, 9245-9249.	4.0	28
14	Full-field photonic biosensors based on tunable bio-doped sol–gel glasses. Lab on A Chip, 2008, 8, 1185.	3.1	26
15	Algae–silica systems as functional hybrid materials. Journal of Materials Chemistry, 2010, 20, 9362-9369.	6.7	25
16	Microlenses with defined contour shapes. Optics Express, 2011, 19, 18665.	1.7	25
17	Three-dimensional imaging on a chip using optofluidics light-sheet fluorescence microscopy. Lab on A Chip, 2021, 21, 2945-2954.	3.1	24
18	Integrated polymer optical accelerometer. IEEE Photonics Technology Letters, 2005, 17, 1262-1264.	1.3	23

#	Article	IF	CITATIONS
19	Polymer microoptoelectromechanical systems: Accelerometers and variable optical attenuators. Sensors and Actuators A: Physical, 2008, 145-146, 147-153.	2.0	22
20	Optical Biosensor Based On Hollow Integrated Waveguides. Analytical Chemistry, 2008, 80, 3498-3501.	3.2	22
21	Organic-inorganic-hybrid-polymer microlens arrays with tailored optical characteristics and multi-focal properties. Optics Express, 2015, 23, 25365.	1.7	22
22	Patterning High-Aspect-Ratio Sol–Gel Structures by Microtransfer Molding. Chemistry of Materials, 2008, 20, 2662-2668.	3.2	21
23	Poly(Dimethylsiloxane) Waveguide Cantilevers for Optomechanical Sensing. IEEE Photonics Technology Letters, 2009, 21, 79-81.	1.3	21
24	Direct writing laser of high aspect ratio epoxy microstructures. Journal of Micromechanics and Microengineering, 2011, 21, 017003.	1.5	21
25	Design considerations of a hollow microneedle-optofluidic biosensing platform incorporating enzyme-linked assays. Journal of Micromechanics and Microengineering, 2018, 28, 024002.	1.5	20
26	Enhanced electrochemical sensing performance by in situ electrocopolymerization of pyrrole and thiophene-grafted chitosan. International Journal of Biological Macromolecules, 2020, 143, 582-593.	3.6	19
27	Recent Progress in Lab-On-a-Chip Systems for the Monitoring of Metabolites for Mammalian and Microbial Cell Research. Sensors, 2019, 19, 5027.	2.1	18
28	Inkjet Printing of High Aspect Ratio Superparamagnetic SU-8 Microstructures with Preferential Magnetic Directions. Micromachines, 2014, 5, 583-593.	1.4	17
29	A polymeric micro-optical interface for flow monitoring in biomicrofluidics. Biomicrofluidics, 2010, 4, 024108.	1.2	16
30	Inkjet printed superparamagnetic polymer composite hemispheres with programmed magnetic anisotropy. Nanoscale, 2014, 6, 10495-10499.	2.8	16
31	PDMS-based, magnetically actuated variable optical attenuators obtained by soft lithography and inkjet printing technologies. Sensors and Actuators A: Physical, 2014, 215, 30-35.	2.0	16
32	Polymeric MOEMS Variable Optical Attenuator. IEEE Photonics Technology Letters, 2006, 18, 2425-2427.	1.3	14
33	3-D modulable PDMS-based microlens system. Optics Express, 2008, 16, 4918.	1.7	14
34	Inkjet printed SUâ€8 hemispherical microcapsules and silicon chip embedding. Micro and Nano Letters, 2013, 8, 633-636.	0.6	14
35	High-Aspect-Ratio SU-8-Based Optofluidic Device for Ammonia Detection in Cell Culture Media. ACS Sensors, 2020, 5, 2523-2529.	4.0	14
36	Next Generation Cell Culture Tools Featuring Micro―and Nanotopographies for Biological Screening. Advanced Functional Materials, 2022, 32, 2100881.	7.8	14

#	Article	IF	CITATIONS
37	Colorimetric Detection of Extracellular Hydrogen Peroxide Using an Integrated Microfluidic Device. Analytical Chemistry, 2022, 94, 1726-1732.	3.2	14
38	Light coupling into an optical microcantilever by an embedded diffraction grating. Applied Optics, 2006, 45, 229.	2.1	13
39	Curved Holographic Combiner for Color Head Worn Display. Journal of Display Technology, 2014, 10, 444-449.	1.3	13
40	Highâ€Frequency Ultrasound Boosts Bull and Human Sperm Motility. Advanced Science, 2022, 9, e2104362.	5.6	13
41	Biomimetic soft lithography on curved nanostructured surfaces. Microelectronic Engineering, 2012, 97, 269-271.	1.1	12
42	The Bumpy Road to Stem Cell Therapies: Rational Design of Surface Topographies to Dictate Stem Cell Mechanotransduction and Fate. ACS Applied Materials & Interfaces, 2022, 14, 23066-23101.	4.0	12
43	Highly Selective Nanostructured Electrochemical Sensor Utilizing Densely Packed Ultrathin Gold Nanowires Film. Electroanalysis, 2020, 32, 1850-1858.	1.5	11
44	Fluid-mediated parallel self-assembly of polymeric micro-capsules for liquid encapsulation and release. Soft Matter, 2013, 9, 9931.	1.2	10
45	One-Step Patterning of Hybrid Xerogel Materials for the Fabrication of Disposable Solid-State Light Emitters. ACS Applied Materials & Interfaces, 2012, 4, 5029-5037.	4.0	9
46	Patterning of diamond like carbon films for sensor applications using silicon containing thermoplastic resist (SiPol) as a hard mask. Applied Surface Science, 2016, 385, 145-152.	3.1	9
47	Hollow waveguide-based full-field absorbance biosensor. Sensors and Actuators B: Chemical, 2009, 139, 143-149.	4.0	8
48	Mechanically tuneable microoptical structure based on PDMS. Sensors and Actuators A: Physical, 2010, 162, 260-266.	2.0	7
49	Polymeric variable optical attenuators based on magnetic sensitive stimuli materials. Journal of Micromechanics and Microengineering, 2014, 24, 125008.	1.5	7
50	Microfabricated silicon chip as lipid membrane sample holder for serial protein crystallography. Micro and Nano Engineering, 2019, 3, 31-36.	1.4	6
51	Silicon-based rectangular hollow integrated waveguides. Optics Communications, 2008, 281, 1568-1575.	1.0	5
52	Heterogeneous material micro-transfer by ink-jet print assisted mould filling. Microelectronic Engineering, 2012, 98, 619-622.	1.1	5
53	Microdrop generation and deposition of ionic liquids. Journal of Materials Research, 2014, 29, 2100-2107.	1.2	5
54	Direct imprinting of organic–inorganic hybrid materials into high aspect ratio sub-100Ânm structures. Microsystem Technologies, 2014, 20, 1961-1966.	1.2	5

#	Article	IF	CITATIONS
55	Three-Dimensional Micropatterning Deters Early Bacterial Adherence and Can Eliminate Colonization. ACS Applied Materials & Interfaces, 2021, 13, 23339-23351.	4.0	5
56	Mechanically tuneable microoptical structure based on PDMS. Procedia Chemistry, 2009, 1, 560-563.	0.7	4
57	Fluorophore-doped xerogel antiresonant reflecting optical waveguides. Optics Express, 2011, 19, 5026.	1.7	4
58	Characterization of optical accelerometers based on UV-sensitive polymers. IEEE Sensors Journal, 2006, 6, 412-419.	2.4	3
59	Curved transflective holographic screens for head-mounted display. , 2013, , .		3
60	Integrated microfluidic device to monitor unseen Escherichia coli contamination in mammalian cell culture. Sensors and Actuators B: Chemical, 2022, 359, 131522.	4.0	3
61	UV-patternable polymers with selective spectral response. Microelectronic Engineering, 2012, 98, 234-237.	1.1	2
62	Hollow waveguides ray-tracing analysis. , 2008, , .		1
63	Next Generation Cell Culture Tools Featuring Micro―and Nanotopographies for Biological Screening (Adv. Funct. Mater. 3/2022). Advanced Functional Materials, 2022, 32, .	7.8	1
64	All-photonic SU-8 Variable Optical Attenuator. , 2014, , .		0
65	Photonic nanofences: Combining the advantages of photonic nanowires and slot waveguides. , 2015, , .		0
66	Special Issue on Micro/Nano Lithography with Photons, Electrons & Ions 2014. Microelectronic Engineering, 2015, 143, vii.	1.1	0
67	Characterization of Ferrofluid-Based Stimuli-Responsive Elastomers. Frontiers in Mechanical Engineering, 2016, 2, .	0.8	0
68	Photonic nanofences for integrated sub-wavelength structures-based sensing applications. , 2016, , .		0
69	Photonic lab-on-a-chip device with UV light responsive smart surfaces. , 2017, , .		0
70	Optical and Structural Numerical Simulation of SU-8: Optical Accelerometer. Sensor Letters, 2008, 6, 106-114.	0.4	0