Thomas Reindl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/483867/publications.pdf

Version: 2024-02-01

63 papers

3,112 citations

147566 31 h-index 55 g-index

63 all docs

63
docs citations

63 times ranked 3220 citing authors

#	Article	IF	CITATIONS
1	Effects of â€~invisible' energy storage on power system operations. Journal of Energy Storage, 2022, 45, 103626.	3.9	O
2	Global sensitivity and uncertainty analysis of the levelised cost of storage (LCOS) for solar-PV-powered cooling. Applied Energy, 2021, 286, 116533.	5.1	19
3	Novel forecast-based dispatch strategy optimization for PV hybrid systems in real time. Energy, 2021, 222, 119918.	4.5	10
4	Performance loss rates of floating photovoltaic installations in the tropics. Solar Energy, 2021, 219, 58-64.	2.9	15
5	The cooling effect of floating PV in two different climate zones: A comparison of field test data from the Netherlands and Singapore. Solar Energy, 2021, 219, 15-23.	2.9	46
6	Comprehensive feasibility assessment of building integrated photovoltaics (BIPV) on building surfaces in high-density urban environments. Solar Energy, 2021, 225, 734-746.	2.9	30
7	Photovoltaic module failures after 10 years of operation in the tropics. Renewable Energy, 2021, 177, 327-335.	4.3	16
8	Corrigendum to "Comprehensive feasibility assessment of building integrated photovoltaics (BIPV) on building surfaces in high-density urban environments―[Sol. Energy 225 (2021) 734–746]. Solar Energy, 2021, 228, 128.	2.9	1
9	Visual impact assessment of coloured Building-integrated photovoltaics on retrofitted building facades using saliency mapping. Solar Energy, 2021, 228, 643-658.	2.9	7
10	Impact analysis of large power networks with high share of renewables in transient conditions. IET Renewable Power Generation, 2020, 14, 1349-1358.	1.7	15
11	On the PV Tracker Performance: Tracking the Sun Versus Tracking the Best Orientation. IEEE Journal of Photovoltaics, 2020, 10, 1474-1480.	1.5	24
12	Life cycle cost analysis (LCCA) of PV-powered cooling systems with thermal energy and battery storage for off-grid applications. Applied Energy, 2020, 273, 115145.	5.1	57
13	Global Techno-Economic Performance of Bifacial and Tracking Photovoltaic Systems. Joule, 2020, 4, 1514-1541.	11.7	92
14	Local reactive power dispatch optimisation minimising global objectives. Applied Energy, 2020, 262, 114529.	5.1	16
15	A Worldwide Theoretical Comparison of Outdoor Potential for Various Silicon-Based Tandem Module Architecture. Cell Reports Physical Science, 2020, 1, 100037.	2.8	22
16	PVâ€GO: A multiobjective and robust optimization approach for the grid metallization design of Siâ€based solar cells and modules. Progress in Photovoltaics: Research and Applications, 2019, 27, 113-135.	4.4	7
17	Stability implications of bulk power networks with large scale PVs. Energy, 2019, 187, 115927.	4.5	25
18	Terawatt-scale photovoltaics: Transform global energy. Science, 2019, 364, 836-838.	6.0	320

#	Article	IF	CITATIONS
19	Levelised Cost of Storage (LCOS) for solar-PV-powered cooling in the tropics. Applied Energy, 2019, 242, 640-654.	5.1	24
20	Impact of urban block typology on building solar potential and energy use efficiency in tropical high-density city. Applied Energy, 2019, 240, 513-533.	5.1	112
21	Analytical Approach to Reactive Power Dispatch and Energy Arbitrage in Distribution Systems With DERs. IEEE Transactions on Power Systems, 2018, 33, 6522-6533.	4.6	56
22	Global Prediction of Photovoltaic Field Performance Differences Using Open-Source Satellite Data. Joule, 2018, 2, 307-322.	11.7	40
23	Economic and technical analysis of reactive power provision from distributed energy resources in microgrids. Applied Energy, 2018, 210, 827-841.	5.1	81
24	Optimization and Evaluation of Naturally Ventilated BIPV Façade Design. Energy Procedia, 2018, 150, 87-93.	1.8	16
25	Competitiveness of PV Inverter as a Reactive Power Compensator considering Inverter Lifetime Reduction. Energy Procedia, 2018, 150, 74-82.	1.8	20
26	Monofacial vs bifacial Si-based PV modules: Which one is more cost-effective?. Solar Energy, 2018, 176, 412-438.	2.9	98
27	A diesel replacement strategy for off-grid systems based on progressive introduction of PV and batteries: An Indonesian case study. Applied Energy, 2018, 229, 1218-1232.	5.1	45
28	Field experience and performance analysis of floating PV technologies in the tropics. Progress in Photovoltaics: Research and Applications, 2018, 26, 957-967.	4.4	140
29	A multi-objective and robust optimization approach for sizing and placement of PV and batteries in off-grid systems fully operated by diesel generators: An Indonesian case study. Energy, 2018, 160, 410-429.	4.5	85
30	Adaptive directional overcurrent relaying scheme for meshed distribution networks. IET Generation, Transmission and Distribution, 2018, 12, 3212-3220.	1.4	42
31	Novel High-Power Nonresonant Multichannel LED Driver. IEEE Transactions on Industrial Electronics, 2017, 64, 5851-5864.	5. 2	11
32	Distributed Congestion Management of Distribution Grids Under Robust Flexible Buildings Operations. IEEE Transactions on Power Systems, 2017, 32, 4600-4613.	4.6	57
33	A Novel ZVS DC–DC Full-Bridge Converter With Hold-Up Time Operation. IEEE Transactions on Industrial Electronics, 2017, 64, 4491-4500.	5. 2	27
34	Generation and storage scheduling of combined heat and power. Energy, 2017, 124, 693-705.	4.5	31
35	The PV System Doctor – Comprehensive diagnosis of PV system installations. Energy Procedia, 2017, 130, 108-113.	1.8	6
36	Economic Viability Analysis of Silicon Solar Cell Manufacturing: Al-BSF versus PERC. Energy Procedia, 2017, 130, 43-49.	1.8	22

#	Article	IF	CITATIONS
37	Energy meteorology for accurate forecasting of PV power output on different time horizons. Energy Procedia, 2017, 130, 130-138.	1.8	18
38	An irradiance-neutral view on the competitiveness of life-cycle cost of PV rooftop systems across cities. Energy Procedia, 2017, 130, 122-129.	1.8	19
39	PV power conversion and short-term forecasting in a tropical, densely-built environment in Singapore. Renewable Energy, 2016, 94, 496-509.	4.3	42
40	Shading analysis for rooftop BIPV embedded in a high-density environment: A case study in Singapore. Energy and Buildings, 2016, 121, 159-164.	3.1	43
41	Generation-scheduling-coupled battery sizing of stand-alone hybrid power systems. Energy, 2016, 114, 671-682.	4.5	27
42	Short term solar irradiance forecasting using a mixed wavelet neural network. Renewable Energy, 2016, 90, 481-492.	4.3	137
43	On the impact of haze on the yield of photovoltaic systems in Singapore. Renewable Energy, 2016, 89, 389-400.	4.3	48
44	An improved particle swarm optimisation algorithm applied to battery sizing for stand-alone hybrid power systems. International Journal of Electrical Power and Energy Systems, 2016, 74, 104-117.	3.3	89
45	A novel hybrid approach based on self-organizing maps, support vector regression and particle swarm optimization to forecast solar irradiance. Energy, 2015, 82, 570-577.	4.5	111
46	Hybridizing genetic algorithm with differential evolution for solving the unit commitment scheduling problem. Swarm and Evolutionary Computation, 2015, 23, 50-64.	4.5	92
47	An Empirical Model for Rack-Mounted PV Module Temperatures for Southeast Asian Locations Evaluated for Minute Time Scales. IEEE Journal of Photovoltaics, 2015, 5, 774-782.	1.5	17
48	Enhanced Multiobjective Evolutionary Algorithm Based on Decomposition for Solving the Unit Commitment Problem. IEEE Transactions on Industrial Informatics, 2015, 11, 1346-1357.	7.2	61
49	Bidirectional irradiance transposition based on the Perez model. Solar Energy, 2014, 110, 768-780.	2.9	38
50	Effect of Solar Spectrum on the Performance of Various Thin-Film PV Module Technologies in Tropical Singapore. IEEE Journal of Photovoltaics, 2014, 4, 1268-1274.	1.5	41
51	The Impact of Haze on Performance Ratio and Short-Circuit Current of PV Systems in Singapore. IEEE Journal of Photovoltaics, 2014, 4, 1585-1592.	1.5	29
52	The balance between aesthetics and performance in building-integrated photovoltaics in the tropics. Progress in Photovoltaics: Research and Applications, 2014, 22, 744-756.	4.4	35
53	Satellite image analysis and a hybrid ESSS/ANN model to forecast solar irradiance in the tropics. Energy Conversion and Management, 2014, 79, 66-73.	4.4	76
54	Spatial Load Forecasting With Communication Failure Using Time-Forward Kriging. IEEE Transactions on Power Systems, 2014, 29, 2875-2882.	4.6	21

#	Article	IF	CITATIONS
55	Performance Degradation of Various PV Module Technologies in Tropical Singapore. IEEE Journal of Photovoltaics, 2014, 4, 1288-1294.	1.5	90
56	Solar irradiance forecasting using spatio-temporal empirical kriging and vector autoregressive models with parameter shrinkage. Solar Energy, 2014, 103, 550-562.	2.9	72
57	Outdoor PV Module Performance under Fluctuating Irradiance Conditions in Tropical Climates. Energy Procedia, 2013, 33, 238-247.	1.8	29
58	On PV module temperatures in tropical regions. Solar Energy, 2013, 88, 80-87.	2.9	58
59	Short-term solar irradiance forecasting using exponential smoothing state space model. Energy, 2013, 55, 1104-1113.	4.5	159
60	Impact of Distributed Generation on Power Distribution Systems. Energy Procedia, 2012, 25, 93-100.	1.8	91
61	Comparison of Parameterisation Models for the Estimation of the Maximum Power Output of PV Modules. Energy Procedia, 2012, 25, 101-107.	1.8	11
62	Use of LiFePO4 Batteries in Stand-Alone Solar System. Energy Procedia, 2012, 25, 135-140.	1.8	21
63	Investigation of the Performance of Commercial Photovoltaic Modules under Tropical Conditions. Japanese Journal of Applied Physics, 2012, 51, 10NF11.	0.8	2