Kipp W Johnson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4838609/publications.pdf

Version: 2024-02-01

69 papers 4,270 citations

257101 24 h-index 58 g-index

85 all docs 85 docs citations

85 times ranked 6870 citing authors

#	Article	IF	CITATIONS
1	Using Deep-Learning Algorithms to Simultaneously Identify Right and Left Ventricular Dysfunction From the Electrocardiogram. JACC: Cardiovascular Imaging, 2022, 15, 395-410.	2.3	35
2	Artificial Intelligence and Cardiovascular Genetics. Life, 2022, 12, 279.	1.1	13
3	Integration of novel monitoring devices with machine learning technology for scalable cardiovascular management. Nature Reviews Cardiology, 2021, 18, 75-91.	6.1	113
4	Deep learning for biomedical applications. , 2021, , 71-94.		0
5	Federated Learning of Electronic Health Records to Improve Mortality Prediction in Hospitalized Patients With COVID-19: Machine Learning Approach. JMIR Medical Informatics, 2021, 9, e24207.	1.3	108
6	Association of SARS-CoV-2 viral load at admission with in-hospital acute kidney injury: A retrospective cohort study. PLoS ONE, 2021, 16, e0247366.	1.1	5
7	Abstract P405: A Time-Series Forecast Model to Assess Vital Sign Waveform Variability Prior to Vasospasm. Stroke, 2021, 52, .	1.0	0
8	Deep Neural Networks Can Predict New-Onset Atrial Fibrillation From the 12-Lead ECG and Help Identify Those at Risk of Atrial Fibrillation–Related Stroke. Circulation, 2021, 143, 1287-1298.	1.6	134
9	Phe2vec: Automated disease phenotyping based on unsupervised embeddings from electronic health records. Patterns, 2021, 2, 100337.	3.1	19
10	Opportunities and challenges for artificial intelligence in clinical cardiovascular genetics. Trends in Genetics, 2021, 37, 780-783.	2.9	1
11	Artificial intelligence in gastroenterology: A state-of-the-art review. World Journal of Gastroenterology, 2021, 27, 6794-6824.	1.4	50
12	Predictive Modelling of Susceptibility to Substance Abuse, Mortality and Drug-Drug Interactions in Opioid Patients. Frontiers in Artificial Intelligence, 2021, 4, 742723.	2.0	4
13	Integrating blockchain technology with artificial intelligence for cardiovascular medicine. Nature Reviews Cardiology, 2020, 17, 1-3.	6.1	83
14	Predictors of In-Hospital Mortality after Transcatheter Aortic Valve Implantation. American Journal of Cardiology, 2020, 125, 251-257.	0.7	8
15	Recurrent spontaneous coronary artery dissection in the United States. International Journal of Cardiology, 2020, 301, 34-37.	0.8	19
16	Molecular Imaging of Apoptosis in Atherosclerosis by Targeting CellÂMembrane Phospholipid Asymmetry. Journal of the American College of Cardiology, 2020, 76, 1862-1874.	1.2	16
17	Utilization of Deep Learning for Subphenotype Identification in Sepsis-Associated Acute Kidney Injury. Clinical Journal of the American Society of Nephrology: CJASN, 2020, 15, 1557-1565.	2.2	59
18	Machine learning prediction in cardiovascular diseases: a meta-analysis. Scientific Reports, 2020, 10, 16057.	1.6	182

#	Article	IF	CITATIONS
19	Sepsis in the era of data-driven medicine: personalizing risks, diagnoses, treatments and prognoses. Briefings in Bioinformatics, 2020, 21, 1182-1195.	3.2	29
20	Retrospective cohort study of clinical characteristics of 2199 hospitalised patients with COVID-19 in New York City. BMJ Open, 2020, 10, e040736.	0.8	50
21	Machine Learning Applications in the Neuro ICU: A Solution to Big Data Mayhem?. Frontiers in Neurology, 2020, 11, 554633.	1.1	17
22	GENOME-WIDE ASSOCIATION STUDY OF PERIPHERAL ARTERY DISEASE AND CAROTID ARTERY DISEASE IDENTIFIES NOVEL GENETIC LOCI AND COAGULATION PATHWAYS. Journal of the American College of Cardiology, 2020, 75, 2138.	1.2	0
23	Proposed Requirements for Cardiovascular Imaging-Related Machine Learning Evaluation (PRIME): A Checklist. JACC: Cardiovascular Imaging, 2020, 13, 2017-2035.	2.3	123
24	Prediction of mortality from 12-lead electrocardiogram voltage data using a deep neural network. Nature Medicine, 2020, 26, 886-891.	15.2	168
25	Machine Learning in Cardiology—Ensuring Clinical Impact Lives Up to the Hype. Journal of Cardiovascular Pharmacology and Therapeutics, 2020, 25, 379-390.	1.0	11
26	Prevalence and Impact of Myocardial Injury in Patients Hospitalized With COVID-19 Infection. Journal of the American College of Cardiology, 2020, 76, 533-546.	1.2	592
27	Molecular Imaging of CardiacÂAllograft Rejection. JACC: Cardiovascular Imaging, 2020, 13, 1438-1441.	2.3	3
28	Clinical features and prognosis of patients with spontaneous coronary artery dissection. International Journal of Cardiology, 2020, 312, 33-36.	0.8	16
29	Machine Learning to Predict Mortality and Critical Events in a Cohort of Patients With COVID-19 in New York City: Model Development and Validation. Journal of Medical Internet Research, 2020, 22, e24018.	2.1	174
30	Heterogeneous Graph Embeddings of Electronic Health Records Improve Critical Care Disease Predictions. Lecture Notes in Computer Science, 2020, , 14-25.	1.0	0
31	Integrative analysis of loss-of-function variants in clinical and genomic data reveals novel genes associated with cardiovascular traits. BMC Medical Genomics, 2019, 12, 108.	0.7	8
32	Precision Medicine for Aortic Stenosis. JACC: Cardiovascular Imaging, 2019, 12, 249-251.	2.3	2
33	A transcriptomic model to predict increase in fibrous cap thickness in response to high-dose statin treatment: Validation by serial intracoronary OCT imaging. EBioMedicine, 2019, 44, 41-49.	2.7	9
34	PatientExploreR: an extensible application for dynamic visualization of patient clinical history from electronic health records in the OMOP common data model. Bioinformatics, 2019, 35, 4515-4518.	1.8	28
35	How artificial intelligence could redefine clinical trials in cardiovascular medicine: lessons learned from oncology. Personalized Medicine, 2019, 16, 87-92.	0.8	18
36	Deep learning for cardiovascular medicine: a practical primer. European Heart Journal, 2019, 40, 2058-2073.	1.0	218

3

#	Article	IF	CITATIONS
37	Racial and Sex Differences in Stroke Risk in Patients With Atrial Fibrillation. Journal of the American College of Cardiology, 2019, 74, 3069-3070.	1.2	2
38	Prevalence, Presentation, and Associated Conditions of Patients With Fibromuscular Dysplasia. American Journal of Cardiology, 2019, 123, 1169-1172.	0.7	5
39	Conditions and Factors Associated With Spontaneous Coronary Artery Dissection (from a National) Tj ETQq1 1 (0.784314 0.7	rgBT/Overlo
40	Evaluation of patient re-identification using laboratory test orders and mitigation via latent space variables. Pacific Symposium on Biocomputing Pacific Symposium on Biocomputing, 2019, 24, 415-426.	0.7	1
41	Causal inference on electronic health records to assess blood pressure treatment targets: an application of the parametric g formula. , 2018 , , .		5
42	The next generation of precision medicine: observational studies, electronic health records, biobanks and continuous monitoring. Human Molecular Genetics, 2018, 27, R56-R62.	1.4	48
43	Machine learning in cardiovascular medicine: are we there yet?. Heart, 2018, 104, 1156-1164.	1.2	329
44	Systematic analyses of drugs and disease indications in RepurposeDB reveal pharmacological, biological and epidemiological factors influencing drug repositioning. Briefings in Bioinformatics, 2018, 19, 656-678.	3.2	81
45	Automated disease cohort selection using word embeddings from Electronic Health Records. , 2018, , .		29
46	Big data, artificial intelligence, and cardiovascular precision medicine. Expert Review of Precision Medicine and Drug Development, 2018, 3, 305-317.	0.4	18
47	Pharmacological risk factors associated with hospital readmission rates in a psychiatric cohort identified using prescriptome data mining. BMC Medical Informatics and Decision Making, 2018, 18, 79.	1.5	10
48	The whole is greater than the sum of its parts: combining classical statistical and machine intelligence methods in medicine. Heart, 2018, 104, 1228-1228.	1.2	15
49	Association of Hemoglobin A _{1c} Levels With Use of Sulfonylureas, Dipeptidyl Peptidase 4 Inhibitors, and Thiazolidinediones in Patients With Type 2 Diabetes Treated With Metformin. JAMA Network Open, 2018, 1, e181755.	2.8	54
50	Pathology of Peripheral Artery Disease in Patients With Critical Limb Ischemia. Journal of the American College of Cardiology, 2018, 72, 2152-2163.	1.2	181
51	Incidence and aetiology of bacterial meningitis among children aged 1–59†months in South Asia: systematic review and meta-analysis. Vaccine, 2018, 36, 5846-5857.	1.7	17
52	Artificial Intelligence in Cardiology. Journal of the American College of Cardiology, 2018, 71, 2668-2679.	1.2	690
53	Evaluation of patient re-identification using laboratory test orders and mitigation via latent space variables. , 2018, , .		3
54	A 72-Year-Old Patient with Longstanding, Untreated Familial Hypercholesterolemia but no Coronary Artery Calcification: A Case Report. Cureus, 2018, 10, e2452.	0.2	1

#	Article	IF	Citations
55	Causal inference on electronic health records to assess blood pressure treatment targets: an application of the parametric g formula. Pacific Symposium on Biocomputing Pacific Symposium on Biocomputing, 2018, 23, 180-191.	0.7	3
56	Automated disease cohort selection using word embeddings from Electronic Health Records. Pacific Symposium on Biocomputing Pacific Symposium on Biocomputing, 2018, 23, 145-156.	0.7	17
57	A Network-Biology Informed Computational Drug Repositioning Strategy to Target Disease Risk Trajectories and Comorbidities of Peripheral Artery Disease. AMIA Summits on Translational Science Proceedings, 2018, 2017, 108-117.	0.4	4
58	PREDICTIVE MODELING OF HOSPITAL READMISSION RATES USING ELECTRONIC MEDICAL RECORD-WIDE MACHINE LEARNING: A CASE-STUDY USING MOUNT SINAI HEART FAILURE COHORT., 2017, 22, 276-287.		91
59	INVESTIGATION OF NOVEL DRUG TARGETS IMPLICATED IN HIGH-DOSE STATIN THERAPY FROM YELLOW-II TRIAL: TOWARDS PERSONALIZED LIPID LOWERING THERAPIES. Journal of the American College of Cardiology, 2017, 69, 977.	1.2	0
60	Intracoronary Imaging, Cholesterol Efflux, and Transcriptomics after Intensive Statin Treatment in Diabetes. Scientific Reports, 2017, 7, 7001.	1.6	12
61	Enabling Precision Cardiology Through Multiscale Biology and Systems Medicine. JACC Basic To Translational Science, 2017, 2, 311-327.	1.9	61
62	Intracoronary Imaging, Cholesterol Efflux, and Transcriptomes After IntensiveÂStatinÂTreatment. Journal of the American College of Cardiology, 2017, 69, 628-640.	1.2	56
63	Abstract 3250: Computational drug repositioning and biochemical validation of piperlongumine as a potent therapeutic agent for neuroendocrine prostate cancer., 2017,,.		1
64	Abstract 3772: A multi-scale survey to assess the impact of inflammatory diseases of the abdominal cavity and prostate cancer severity. , 2017 , , .		0
65	Medical student preparedness for an era of personalized medicine: findings from one US medical school. Personalized Medicine, 2016, 13, 129-141.	0.8	36
66	Differences in Dynamics and Stability of the Wild Type Beta-Amyloid \hat{A}^2 1-40, and \hat{I}^2 1-39 (Japanese) Mutant Protofibril Structures, a Molecular Dynamics Study. Biophysical Journal, 2014, 106, 482a.	0.2	0
67	Comparison of the Genome Sequences of "Candidatus Portiera aleyrodidarum―Primary Endosymbionts of the Whitefly Bemisia tabaci B and Q Biotypes. Applied and Environmental Microbiology, 2013, 79, 1757-1759.	1.4	25
68	Genome Sequences of the Primary Endosymbiont "Candidatus Portiera aleyrodidarum―in the Whitefly Bemisia tabaci B and Q Biotypes. Journal of Bacteriology, 2012, 194, 6678-6679.	1.0	29
69	Coronary plaque vulnerability in statin-treated patients with elevated LDL-C and hs-CRP: optical coherence tomography study. International Journal of Cardiovascular Imaging, 0, , 1.	0.2	0