Wessel W Wits

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4838519/publications.pdf Version: 2024-02-01

MIESSEL MI MITS

#	Article	IF	CITATIONS
1	The role of scan strategies in fatigue performance for laser powder bed fusion. CIRP Annals - Manufacturing Technology, 2022, 71, 185-188.	1.7	3
2	Design tool for dynamic loading conditions: a coupled multi-level approach. Procedia CIRP, 2021, 100, 337-342.	1.0	0
3	Powder Bed Fusion of nickel-based superalloys: A review. International Journal of Machine Tools and Manufacture, 2021, 165, 103729.	6.2	207
4	Graded structures by multi-material mixing in laser powder bed fusion. CIRP Annals - Manufacturing Technology, 2021, 70, 159-162.	1.7	25
5	Utilizing Additive Manufacturing to Enhance Two-Phase Heat Transfer Devices. , 2021, , .		Ο
6	Phase change heat transfer characteristics of an additively manufactured wick for heat pipe applications. Applied Thermal Engineering, 2020, 168, 114890.	3.0	45
7	Pulsed mode selective laser melting of porous structures: Structural and thermophysical characterization. Additive Manufacturing, 2020, 35, 101263.	1.7	16
8	Porous materials additively manufactured at low energy: Single-layer manufacturing and characterization. Materials and Design, 2020, 191, 108654.	3.3	13
9	The role of particles flow characteristics in the performance of cold spray nozzles. CIRP Annals - Manufacturing Technology, 2020, 69, 189-192.	1.7	8
10	Understanding Thermal Interface Conditions of Chip-on-Board LED Light Sources. , 2020, , .		1
11	Laser powder bed fusion of a Magnesium-SiC metal matrix composite. Procedia CIRP, 2019, 81, 506-511.	1.0	12
12	Additive manufacturing of Ti–6Al–4V parts through laser metal deposition (LMD): Process, microstructure, and mechanical properties. Journal of Alloys and Compounds, 2019, 804, 163-191.	2.8	214
13	Experimental Analysis and Wear Prediction Model for Unfilled Polymer–Polymer Sliding Contacts. Tribology Transactions, 2019, 62, 176-188.	1.1	12
14	Heat Pipe Array for Planar Cooling of Rotating Radar Systems. Journal of Heat Transfer, 2019, 141, .	1.2	8
15	Pin Fin Heat Sink Optimization for Natural-Convection Cooling. , 2019, , .		1
16	Experimental Investigation of a Flat-Plate Closed-Loop Pulsating Heat Pipe. Journal of Heat Transfer, 2019, 141, .	1.2	12
17	Method to determine thermoelastic material properties of constituent and copper-patterned layers of multilayer printed circuit boards. Journal of Materials Science: Materials in Electronics, 2018, 29, 4900-4914.	1.1	17
18	Experimental Performance of a 3D-Printed Hybrid Heat Pipe-Thermosyphon for Cooling of Power Electronics. , 2018, , .		8

WESSEL W WITS

#	Article	IF	CITATIONS
19	Improving Thermal Contact Conductance from Electronics Board to Rack Infrastructure. , 2018, , .		3
20	Freeform-Optimized Shapes for Natural-Convection Cooling. , 2018, , .		9
21	Metal 3D-printed wick structures for heat pipe application: Capillary performance analysis. Applied Thermal Engineering, 2018, 143, 403-414.	3.0	101
22	A geometrical model for managing surface productivity of U-shaped assembly lines. CIRP Annals - Manufacturing Technology, 2018, 67, 479-482.	1.7	3
23	The utilization of selective laser melting technology on heat transfer devices for thermal energy conversion applications: A review. Renewable and Sustainable Energy Reviews, 2018, 91, 420-442.	8.2	183
24	Modelling and experimental investigation of a thermally driven self-oscillating pump. Applied Thermal Engineering, 2017, 126, 1126-1133.	3.0	10
25	Physics in Design: Real-time Numerical Simulation Integrated into the CAD Environment. Procedia CIRP, 2017, 60, 98-103.	1.0	1
26	Modelling and performance of heat pipes with long evaporator sections. Heat and Mass Transfer, 2017, 53, 3341-3351.	1.2	10
27	An investigation of porous structure characteristics of heat pipes made by additive manufacturing. , 2017, , .		12
28	An experimental study towards the practical application of closed-loop flat-plate pulsating heat pipes. , 2017, , .		2
29	Design for Additive Manufacturing: Automated Build Orientation Selection and Optimization. Procedia CIRP, 2016, 55, 128-133.	1.0	67
30	Porosity testing methods for the quality assessment of selective laser melted parts. CIRP Annals - Manufacturing Technology, 2016, 65, 201-204.	1.7	134
31	Single scan vector prediction in selective laser melting. Additive Manufacturing, 2016, 9, 1-6.	1.7	22
32	How Additive Manufacturing Enables more Sustainable End-user Maintenance, Repair and Overhaul (MRO) Strategies. Procedia CIRP, 2016, 40, 693-698.	1.0	68
33	Numerical and experimental investigation of a counter-current two-phase thermosyphon with cascading pools. Applied Thermal Engineering, 2016, 99, 133-146.	3.0	10
34	A Testpart for Interdisciplinary Analyses in Micro Production Engineering. Procedia CIRP, 2015, 28, 106-112.	1.0	7
35	Laser Beam Welding of Titanium Additive Manufactured Parts. Procedia CIRP, 2015, 28, 70-75.	1.0	31
36	Introducing Trimming and Function Ranking to SolidWorks Based on Function Analysis. Procedia Engineering, 2015, 131, 184-193.	1.2	6

WESSEL W WITS

#	Article	IF	CITATIONS
37	Patent Circumvention Strategy Using TRIZ-based Design-around Approaches. Procedia Engineering, 2015, 131, 798-806.	1.2	10
38	Invention software support by integrating function and mathematical modeling. Chemical Engineering Research and Design, 2015, 103, 32-39.	2.7	5
39	Enabling Lean Design Through Computer Aided Synthesis: The Injection Moulding Cooling Case. Procedia CIRP, 2015, 37, 260-264.	1.0	7
40	Method to explore technology innovation fully exploiting in-house capabilities. CIRP Annals - Manufacturing Technology, 2014, 63, 201-204.	1.7	1
41	Metal Additive Manufacturing of a High-pressure Micro-pump. Procedia CIRP, 2013, 7, 252-257.	1.0	34
42	Modeling Printed Circuit Board Curvature in Relation to Manufacturing Process Steps. Procedia CIRP, 2013, 9, 55-60.	1.0	9
43	An Information Model for Product Development: A Case Study at PHILIPS Shavers. Procedia CIRP, 2013, 9, 97-102.	1.0	4
44	Knowledge Structuring and Simulation Modeling for Product Development. Procedia CIRP, 2012, 2, 4-9.	1.0	5
45	Towards Multidisciplinary Support Tools for Innovation Tasks. Procedia CIRP, 2012, 2, 16-21.	1.0	1
46	Improving system performance through an integrated design approach. CIRP Annals - Manufacturing Technology, 2011, 60, 187-190.	1.7	8
47	TRIZ based interface conflict resolving strategies for modular product architectures. Procedia Engineering, 2011, 9, 30-39.	1.2	6
48	Modeling and Validating the Transient Behavior of Flat Miniature Heat Pipes Manufactured in Multilayer Printed Circuit Board Technology. Journal of Heat Transfer, 2011, 133, .	1.2	11
49	Advances in integrated heat pipe technology for printed circuit boards. , 2010, , .		2
50	Integrated Design and Manufacturing of Flat Miniature Heat Pipes Using Printed Circuit Board Technology. IEEE Transactions on Components and Packaging Technologies, 2010, 33, 398-408.	1.4	22
51	Novel cooling strategy for electronic packages: Directly injected cooling. CIRP Journal of Manufacturing Science and Technology, 2009, 1, 142-147.	2.3	8
52	Reducing design complexity of multidisciplinary domain integrated products: a case study. , 2008, , 149-154.		2
53	Thermal Management through In-Board Heat Pipes Manufactured using Printed Circuit Board Multilayer Technology. Electronics Manufacturing Technology Symposium (IEMT), IEEE/CPMT International, 2006, , .	0.0	8