Axel Kuhn

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4838197/publications.pdf

Version: 2024-02-01

		201674	206112
55	3,856	27	48
papers	citations	h-index	g-index
F 7	F 7	F 7	2626
57	57	57	2626
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	How to administer an antidote to Schrödinger's cat. Journal of Physics B: Atomic, Molecular and Optical Physics, 2022, 55, 054001.	1.5	3
2	Light-matter interaction in open cavities with dielectric stacks. Applied Physics Letters, 2021, 118, 154002.	3.3	4
3	Pushing Purcell enhancement beyond its limits. New Journal of Physics, 2020, 22, 063013.	2.9	9
4	Roadmap on STIRAP applications. Journal of Physics B: Atomic, Molecular and Optical Physics, 2019, 52, 202001.	1.5	108
5	Multimode interferometry for entangling atoms in quantum networks. Quantum Science and Technology, 2019, 4, 025008.	5.8	5
6	Polarization Oscillations in Birefringent Emitter-Cavity Systems. Physical Review Letters, 2019, 122, 083602.	7.8	10
7	Single-atom trapping and transport in DMD-controlled optical tweezers. New Journal of Physics, 2018, 20, 023013.	2.9	35
8	Benchmarking modern algorithms to holographically create optical tweezers for laser-cooled atoms. Journal of Modern Optics, 2018, 65, 2133-2141.	1.3	4
9	Nonlinear Zeeman effects in the cavity-enhanced emission of polarised photons. New Journal of Physics, 2018, 20, 073030.	2.9	8
10	Quantum Logic with Cavity Photons From Single Atoms. Physical Review Letters, 2016, 117, 023602.	7.8	11
11	Qubits, qutrits, and ququads stored in single photons from an atom-cavity system. , 2015, , .		1
12	Cavity Induced Interfacing of Atoms and Light. Nano-optics and Nanophotonics, 2015, , 3-38.	0.2	6
13	Single Emitters in Isolated Quantum Systems. Experimental Methods in the Physical Sciences, 2013, 45, 467-539.	0.1	4
14	Photonic qubits, qutrits and ququads accurately prepared and delivered on demand. New Journal of Physics, 2013, 15, 053007.	2.9	55
15	Quantum networking with time-bin encoded qu-d-its using single photons emitted on demand from an atom-cavity system. , 2013, , .		1
16	Control and manipulation of cold atoms in optical tweezers. New Journal of Physics, 2012, 14, 073051.	2.9	56
17	Single-photon absorption in coupled atom-cavity systems. Physical Review A, 2012, 85, .	2.5	57
18	Spatial light modulators for the manipulation of individual atoms. Applied Physics B: Lasers and Optics, 2011, 102, 443-450.	2.2	12

#	Article	IF	CITATIONS
19	EIT-based quantum memory for single photons from cavity-QED. Applied Physics B: Lasers and Optics, 2011, 103, 579-589.	2.2	12
20	Quantum memories for single photons from cavity-QED. , 2011, , .		0
21	Highly efficient source for indistinguishable single photons of controlled shape. New Journal of Physics, 2011, 13, 103036.	2.9	61
22	Single photons made-to-measure. New Journal of Physics, 2010, 12, 063024.	2.9	65
23	Cavity-based single-photon sources. Contemporary Physics, 2010, 51, 289-313.	1.8	71
24	Implementation of Atom-Photon Interfaces for Quantum Networking. , 2010, , .		0
25	Coherent imaging of extended objects. Optics Communications, 2009, 282, 465-472.	2.1	8
26	Atom-Photon Entanglement in a Cavity. , 2007, , .		0
27	Scheme for generating a sequence of single photons of alternating polarization. Journal of Modern Optics, 2007, 54, 1569-1580.	1.3	13
28	A single-photon server with just one atom. Nature Physics, 2007, 3, 253-255.	16.7	263
29	Single-Atom Single-Photon Quantum Interface. Science, 2007, 317, 488-490.	12.6	414
30	Time-resolved and state-selective detection of single freely falling atoms. Optics Communications, 2006, 264, 271-277.	2.1	12
31	Characterization of Single Photons Using Two-Photon Interference. Advances in Atomic, Molecular and Optical Physics, 2006, 53, 253-289.	2.3	42
32	Vacuum-stimulated cooling of single atoms in three dimensions. Nature Physics, 2005, 1, 122-125.	16.7	119
33	Strongly Coupled Atom-Cavity Systems. , 2005, , 182-195.		2
34	Submicron Positioning of Single Atoms in a Microcavity. Physical Review Letters, 2005, 95, 173602.	7.8	121
35	Transition from Antibunching to Bunching in Cavity QED. Physical Review Letters, 2005, 94, 053604.	7.8	75
36	COOLING AND TRAPPING IN CAVITY QUANTUM ELECTRODYNAMICS., 2005,,.		0

#	Article	IF	Citations
37	Quantum Beat of Two Single Photons. Physical Review Letters, 2004, 93, 070503.	7.8	233
38	Photon statistics of a non-stationary periodically driven single-photon source. New Journal of Physics, 2004, 6, 86-86.	2.9	33
39	Time-resolved two-photon quantum interference. Applied Physics B: Lasers and Optics, 2003, 77, 797-802.	2.2	138
40	Counter-intuitive vacuum-stimulated raman scattering. Journal of Modern Optics, 2003, 50, 935-942.	1.3	8
41	Kuhn, Hennrich, and Rempe Reply:. Physical Review Letters, 2003, 90, .	7.8	4
42	Counter-intuitive vacuum-stimulated Raman scattering. Journal of Modern Optics, 2003, 50, 935-942.	1.3	1
43	Deterministic Single-Photon Source for Distributed Quantum Networking. Physical Review Letters, 2002, 89, 067901.	7.8	705
44	Vacuum-Stimulated Raman Scattering Based on Adiabatic Passage in a High-Finesse Optical Cavity. Physical Review Letters, 2000, 85, 4872-4875.	7.8	228
45	Neutral atoms prepared in Fock states of a one-dimensional harmonic potential. Physical Review A, 1999, 59, R8-R11.	2.5	43
46	Controlled generation of single photons from a strongly coupled atom-cavity system. Applied Physics B: Lasers and Optics, 1999, 69, 373-377.	2.2	144
47	Raman cooling of spin-polarized cesium atoms in a crossed dipole trap. Europhysics Letters, 1999, 46, 141-147.	2.0	17
48	Coherent population transfer in NO with pulsed lasers: the consequences of hyperfine structure, doppler broadening aaand electromagnetically induced absorption. European Physical Journal D, 1998, 1, 57-70.	1.3	57
49	Free expansion of a Bose-Einstein condensate from an loffe-Pritchard magnetic trap. Applied Physics B: Lasers and Optics, 1998, 67, 719-722.	2.2	15
50	Sideband cooling of neutral atoms in a far-detuned optical lattice. Europhysics Letters, 1998, 42, 395-400.	2.0	84
51	Efficient coherent population transfer in NO molecules using pulsed lasers. Physical Review Letters, 1993, 71, 3637-3640.	7.8	206
52	Population transfer by stimulated Raman scattering with delayed pulses using spectrally broad light. Journal of Chemical Physics, 1992, 96, 4215-4223.	3.0	84
53	Laser-induced population transfer in multistate systems: A comparative study. Physical Review A, 1992, 45, 5297-5300.	2.5	118
54	Angularly resolved rotational energy transfer in highly vibrationally excited states: Na2(v=31)–Ne. Journal of Chemical Physics, 1991, 94, 4252-4259.	3.0	13

#	ARTICLE	IF	CITATIONS
55	Population transfer by stimulated Raman scattering with delayed pulses and by the stimulated-emission pumping method: a comparative study. Journal of the Optical Society of America B: Optical Physics, 1990, 7, 1960.	2.1	58