
S M Sohel Rana

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4838177/publications.pdf Version: 2024-02-01

S M SOHEL PANA

#	Article	IF	CITATIONS
1	High-performance triboelectric nanogenerator based on MXene functionalized polyvinylidene fluoride composite nanofibers. Nano Energy, 2021, 81, 105670.	16.0	211
2	Electrospun PVDF-TrFE/MXene Nanofiber Mat-Based Triboelectric Nanogenerator for Smart Home Appliances. ACS Applied Materials & Interfaces, 2021, 13, 4955-4967.	8.0	211
3	A Novel MXene/Ecoflex Nanocompositeâ€Coated Fabric as a Highly Negative and Stable Friction Layer for Highâ€Output Triboelectric Nanogenerators. Advanced Energy Materials, 2021, 11, .	19.5	133
4	Fabricâ€Assisted MXene/Silicone Nanocompositeâ€Based Triboelectric Nanogenerators for Selfâ€Powered Sensors and Wearable Electronics. Advanced Functional Materials, 2022, 32, 2107143.	14.9	81
5	A human skin-inspired self-powered flex sensor with thermally embossed microstructured triboelectric layers for sign language interpretation. Nano Energy, 2020, 76, 105071.	16.0	74
6	Biomechanical Energyâ€Driven Hybridized Generator as a Universal Portable Power Source for Smart/Wearable Electronics. Advanced Energy Materials, 2020, 10, 1903663.	19.5	63
7	A highly miniaturized freestanding kinetic-impact-based non-resonant hybridized electromagnetic-triboelectric nanogenerator for human induced vibrations harvesting. Applied Energy, 2020, 279, 115799.	10.1	55
8	Cobaltâ€Nanoporous Carbon Functionalized Nanocompositeâ€Based Triboelectric Nanogenerator for Contactless and Sustainable Selfâ€Powered Sensor Systems. Advanced Functional Materials, 2021, 31, 2105110.	14.9	47
9	Cation functionalized nylon composite nanofibrous mat as a highly positive friction layer for robust, high output triboelectric nanogenerators and self-powered sensors. Nano Energy, 2021, 88, 106300.	16.0	47
10	A human-machine interactive hybridized biomechanical nanogenerator as a self-sustainable power source for multifunctional smart electronics applications. Nano Energy, 2020, 76, 105025.	16.0	40
11	A Batteryâ€Less Arbitrary Motion Sensing System Using Magnetic Repulsionâ€Based Selfâ€Powered Motion Sensors and Hybrid Nanogenerator. Advanced Functional Materials, 2020, 30, 2003276.	14.9	33
12	Ultra-robust and broadband rotary hybridized nanogenerator for self-sustained smart-farming applications. Nano Energy, 2021, 85, 105974.	16.0	33
13	Silicone-incorporated nanoporous cobalt oxide and MXene nanocomposite-coated stretchable fabric for wearable triboelectric nanogenerator and self-powered sensing applications. Nano Energy, 2022, 100, 107454.	16.0	29
14	A Hybrid Selfâ€Powered Arbitrary Wave Motion Sensing System for Realâ€Time Wireless Marine Environment Monitoring Application. Advanced Energy Materials, 2022, 12, .	19.5	18
15	Design and Implementation of a Security Improvement Framework of Zigbee Network for Intelligent Monitoring in IoT Platform. Applied Sciences (Switzerland), 2018, 8, 2305.	2.5	17
16	βâ€₽haseâ€Rich Laserâ€Induced Hierarchically Interactive MXene Reinforced Carbon Nanofibers for Multifunctional Breathable Bioelectronics. Advanced Functional Materials, 2022, 32, 2107969.	14.9	16
17	An Electrospun PVDF-TRFE/Mxene Nanofibours Mat-Based Self-Powered Motion Sensor. , 2021, , .		5
18	Highly Responsive and Robust Micro-/Nano-Textured Self-Powered Triboelectric Humidity Sensor. ACS Applied Electronic Materials, 0, , .	4.3	5

#	Article	IF	CITATIONS
19	Cobaltâ€Nanoporous Carbon Functionalized Nanocompositeâ€Based Triboelectric Nanogenerator for Contactless and Sustainable Selfâ€Powered Sensor Systems (Adv. Funct. Mater. 52/2021). Advanced Functional Materials, 2021, 31, .	14.9	2
20	A Poly-DADMAC Functionalized Nanofibours Mat-Based Self-Powered Human Motion Sensor for IoT Applications. , 2021, , .		0
21	βâ€Phaseâ€Rich Laserâ€Induced Hierarchically Interactive MXene Reinforced Carbon Nanofibers for Multifunctional Breathable Bioelectronics (Adv. Funct. Mater. 5/2022). Advanced Functional Materials, 2022, 32, .	14.9	0
22	A Hybrid Selfâ€Powered Arbitrary Wave Motion Sensing System for Realâ€Time Wireless Marine Environment Monitoring Application (Adv. Energy Mater. 7/2022). Advanced Energy Materials, 2022, 12, .	19.5	0