
Margaret M Mayfield

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4838083/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Wild Pollinators Enhance Fruit Set of Crops Regardless of Honey Bee Abundance. Science, 2013, 339, 1608-1611.	6.0	1,767
2	Opposing effects of competitive exclusion on the phylogenetic structure of communities. Ecology Letters, 2010, 13, 1085-1093.	3.0	1,279
3	Rethinking Community Assembly through the Lens of Coexistence Theory. Annual Review of Ecology, Evolution, and Systematics, 2012, 43, 227-248.	3.8	1,014
4	Landscape effects on crop pollination services: are there general patterns?. Ecology Letters, 2008, 11, 499-515.	3.0	983
5	Loss of functional diversity under land use intensification across multiple taxa. Ecology Letters, 2009, 12, 22-33.	3.0	875
6	A global quantitative synthesis of local and landscape effects on wild bee pollinators in agroecosystems. Ecology Letters, 2013, 16, 584-599.	3.0	875
7	Ecological and evolutionary insights from species invasions. Trends in Ecology and Evolution, 2007, 22, 465-471.	4.2	774
8	Stability of pollination services decreases with isolation from natural areas despite honey bee visits. Ecology Letters, 2011, 14, 1062-1072.	3.0	681
9	Non-bee insects are important contributors to global crop pollination. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 146-151.	3.3	618
10	Landâ€use intensification reduces functional redundancy and response diversity in plant communities. Ecology Letters, 2010, 13, 76-86.	3.0	476
11	Global patterns in seed size. Global Ecology and Biogeography, 2007, 16, 109-116.	2.7	334
12	Resilience in ecology: Abstraction, distraction, or where the action is?. Biological Conservation, 2014, 177, 43-51.	1.9	325
13	What does species richness tell us about functional trait diversity? Predictions and evidence for responses of species and functional trait diversity to landâ€use change. Global Ecology and Biogeography, 2010, 19, 423-431.	2.7	302
14	Higher-order interactions capture unexplained complexity in diverse communities. Nature Ecology and Evolution, 2017, 1, 62.	3.4	211
15	Exploring the 'Most Effective Pollinator Principle' with Complex Flowers: Bumblebees and Ipomopsis aggregata. Annals of Botany, 2001, 88, 591-596.	1.4	195
16	The database of the <scp>PREDICTS</scp> (Projecting Responses of Ecological Diversity In Changing) Tj ETQq0	0 0 rgBT /0	Dverlock 10 T
17	Invasions: the trail behind, the path ahead, and a test of a disturbing idea. Journal of Ecology, 2012, 100, 116-127.	1.9	180

18	The <scp>PREDICTS</scp> database: a global database of how local terrestrial biodiversity responds to human impacts. Ecology and Evolution, 2014, 4, 4701-4735.	0.8	178

MARGARET M MAYFIELD

#	Article	IF	CITATIONS
19	Global effects of nonâ€native tree species on multiple ecosystem services. Biological Reviews, 2019, 94, 1477-1501.	4.7	158
20	Specific leaf area responses to environmental gradients through space and time. Ecology, 2014, 95, 399-410.	1.5	149
21	Effects of exotic species on evolutionary diversification. Trends in Ecology and Evolution, 2007, 22, 481-488.	4.2	144
22	EDITOR'S CHOICE: REVIEW: Trait matching of flower visitors and crops predicts fruit set better than trait diversity. Journal of Applied Ecology, 2015, 52, 1436-1444.	1.9	136
23	Integrating the underlying structure of stochasticity into community ecology. Ecology, 2020, 101, e02922.	1.5	113
24	SPECIES AND FUNCTIONAL DIVERSITY OF NATIVE AND HUMANâ€ÐOMINATED PLANT COMMUNITIES. Ecology, 2005, 86, 2365-2372.	1.5	111
25	Accurate predictions of coexistence in natural systems require the inclusion of facilitative interactions and environmental dependency. Journal of Ecology, 2018, 106, 1839-1852.	1.9	83
26	The †filtering' metaphor revisited: competition and environment jointly structure invasibility and coexistence. Biology Letters, 2018, 14, 20180460.	1.0	81
27	Links between community ecology theory and ecological restoration are on the rise. Journal of Applied Ecology, 2018, 55, 570-581.	1.9	74
28	COUNTRYSIDE BIOGEOGRAPHY OF NEOTROPICAL HERBACEOUS AND SHRUBBY PLANTS. , 2005, 15, 423-439.		73
29	AusTraits, a curated plant trait database for the Australian flora. Scientific Data, 2021, 8, 254.	2.4	73
30	The diversity and conservation of plant reproductive and dispersal functional traits in human-dominated tropical landscapes. Journal of Ecology, 2006, 94, 522-536.	1.9	67
31	The evolution of niche overlap and competitive differences. Nature Ecology and Evolution, 2021, 5, 330-337.	3.4	64
32	Understory plant species and functional diversity in the degraded wet tropical forests of Kolombangara Island, Solomon Islands. Biological Conservation, 2012, 145, 214-224.	1.9	59
33	Almond orchards with living ground cover host more wild insect pollinators. Journal of Insect Conservation, 2013, 17, 1011-1025.	0.8	58
34	Distinct invasion strategies operating within a natural annual plant system. Ecology Letters, 2015, 18, 336-346.	3.0	53
35	Functional decay in tree community within tropical fragmented landscapes: Effects of landscape-scale forest cover. PLoS ONE, 2017, 12, e0175545.	1.1	53
36	Climate moderates release from nutrient limitation in natural annual plant communities. Global Ecology and Biogeography, 2015, 24, 549-561.	2.7	47

#	Article	IF	CITATIONS
37	Traits, Habitats, and Clades: Identifying Traits of Potential Importance to Environmental Filtering. American Naturalist, 2009, 174, E1-E22.	1.0	45
38	Aridity drives coordinated trait shifts but not decreased trait variance across the geographic range of eight Australian trees. New Phytologist, 2021, 229, 1375-1387.	3.5	43
39	Distinct responses of niche and fitness differences to water availability underlie variable coexistence outcomes in semiâ€arid annual plant communities. Journal of Ecology, 2019, 107, 293-306.	1.9	40
40	Landscape context explains changes in the functional diversity of regenerating forests better than climate or species richness. Global Ecology and Biogeography, 2017, 26, 1165-1176.	2.7	34
41	The Importance of Nearby Forest to Known and Potential Pollinators of Oil Palm (Elaeis guineënsis) Tj ETQq1 1	0.784314	rgBT /Over o
42	Species wood density and the location of planted seedlings drive earlyâ€stage seedling survival during tropical forest restoration. Journal of Applied Ecology, 2018, 55, 1009-1018.	1.9	30
43	Deconstructing pollinator community effectiveness. Current Opinion in Insect Science, 2017, 21, 98-104.	2.2	29
44	Productivity does not correlate with species and functional diversity in Australian reforestation plantings across a wide climate gradient. Global Ecology and Biogeography, 2019, 28, 1417-1429.	2.7	28
45	Cyclic population dynamics and densityâ€dependent intransitivity as pathways to coexistence between coâ€occurring annual plants. Journal of Ecology, 2018, 106, 838-851.	1.9	25
46	Using multiâ€scale spatially explicit frameworks to understand the relationship between functional diversity and species richness. Ecography, 2022, 2022, .	2.1	25
47	Predicting species abundances in a grassland biodiversity experiment: Tradeâ€offs between model complexity and generality. Journal of Ecology, 2020, 108, 774-787.	1.9	23
48	The germination strategies of widespread annual plants are unrelated to regional climate. Global Ecology and Biogeography, 2014, 23, 1430-1439.	2.7	22
49	Differences in forest plant functional trait distributions across landâ€use and productivity gradients. American Journal of Botany, 2013, 100, 1356-1368.	0.8	21
50	The loss of functional diversity: A detrimental influence of landscapeâ€scale deforestation on tree reproductive traits. Journal of Ecology, 2020, 108, 212-223.	1.9	20
51	Identifying "Useful―Fitness Models: Balancing the Benefits of Added Complexity with Realistic Data Requirements in Models of Individual Plant Fitness. American Naturalist, 2021, 197, 415-433.	1.0	20
52	Rainforest seed rain into abandoned tropical Australian pasture is dependent on adjacent rainforest structure and extent. Austral Ecology, 2017, 42, 238-249.	0.7	19
53	<scp>CropPol</scp> : A dynamic, open and global database on crop pollination. Ecology, 2022, 103, e3614.	1.5	19
54	Native turncoats and indirect facilitation of species invasions. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20171936.	1.2	18

MARGARET M MAYFIELD

#	Article	IF	CITATIONS
55	The effect of habitat fragmentation on the bee visitor assemblages of three Australian tropical rainforest tree species. Ecology and Evolution, 2018, 8, 8204-8216.	0.8	17
56	Disentangling key species interactions in diverse and heterogeneous communities: A Bayesian sparse modelling approach. Ecology Letters, 2022, 25, 1263-1276.	3.0	17
57	Effects of exotic annual grass litter and local environmental gradients on annual plant community structure. Biological Invasions, 2017, 19, 479-491.	1.2	16
58	Comparing the recovery of richness, structure, and biomass in naturally regrowing and planted reforestation. Restoration Ecology, 2020, 28, 347-357.	1.4	16
59	Beyond direct neighbourhood effects: higher-order interactions improve modelling and predicting tree survival and growth. National Science Review, 2021, 8, nwaa244.	4.6	16
60	The effects of land use change on native dung beetle diversity and function in Australia's Wet Tropics. Austral Ecology, 2016, 41, 797-808.	0.7	15
61	Unexpected drought resistance strategies in seedlings of four Brachychiton species. Tree Physiology, 2018, 38, 664-677.	1.4	15
62	Seedling growth responses to speciesâ€, neighborhoodâ€, and landscapeâ€scale effects during tropical forest restoration. Ecosphere, 2018, 9, e02386.	1.0	15
63	Accounting for demographic uncertainty increases predictions for species coexistence: A case study with annual plants. Ecology Letters, 2022, 25, 1618-1628.	3.0	15
64	Potential mechanisms of coexistence in closely related forbs. Oikos, 2016, 125, 1812-1823.	1.2	14
65	Applied ecological research is on the rise but connectivity barriers persist between four major subfields. Journal of Applied Ecology, 2019, 56, 1492-1498.	1.9	13
66	Connectivity and ecosystem services: crop pollination in agricultural landscapes. , 2006, , 255-290.		12
67	Diptera species and functional diversity across tropical Australian countryside landscapes. Biological Conservation, 2015, 191, 436-443.	1.9	11
68	Landscape structure mediates zoochorous-dispersed seed rain under isolated pasture trees across distinct tropical regions. Landscape Ecology, 2019, 34, 1347-1362.	1.9	11
69	Requirements for the spatial storage effect are weakly evident for common species in natural annual plant assemblages. Ecology, 2020, 101, e03185.	1.5	10
70	Correlations and variance among species traits explain contrasting impacts of fragmentation and habitat loss on functional diversity. Landscape Ecology, 2020, 35, 2239-2253.	1.9	9
71	Assessing rainforest restoration: the value of buffer strips for the recovery of rainforest remnants in Australia?s Wet Tropics. Pacific Conservation Biology, 2010, 16, 274.	0.5	8
72	Demographic response and life history of traditional forest resource tree species in a tropical mosaic landscape in Papua New Guinea. Forest Ecology and Management, 2011, 262, 750-758.	1.4	8

MARGARET M MAYFIELD

#	Article	IF	CITATIONS
73	Janzen–Connell effects partially supported in reefâ€building corals: adult presence interacts with settler density to limit establishment. Oikos, 2021, 130, 1310-1325.	1.2	7
74	Nonâ€additive biotic interactions improve predictions of tropical tree growth and impact community size structure. Ecology, 2022, 103, e03588.	1.5	7
75	Different traits predict competitive effect versus response by Bromus madritensis in its native and invaded ranges. Biological Invasions, 2018, 20, 2553-2565.	1.2	6
76	Annual rainfall variation and dispersal limitation combine to alter invaded plant community diversity, dominance hierarchies and seeding phenology. Climate Change Ecology, 2021, 2, 100024.	0.9	5
77	Plant communities, populations and individuals have distinct responses to shortâ€ŧerm warming and neighbour biomass removal in two montane grasslands. Applied Vegetation Science, 2021, 24, .	0.9	5
78	Asteraceae invaders have limited impacts on the pollination of common native annual species in SW Western Australia's open woodland wildflower communities. Plant Ecology, 2015, 216, 1103-1115.	0.7	4
79	Restoration of tropical forests requires more than just planting trees, a lot more…. Applied Vegetation Science, 2016, 19, 553-554.	0.9	4
80	Diverse outcomes of species interactions in an invaded annual plant community. Journal of Plant Ecology, 0, , rtw102.	1.2	4
81	The strength and direction of local (mal)adaptation depends on neighbour density and the environment. Journal of Ecology, 2022, 110, 514-525.	1.9	4
82	Adjacent crop type impacts potential pollinator communities and their pollination services in remnants of natural vegetation. Diversity and Distributions, 2022, 28, 1269-1281.	1.9	4
83	Linking local species coexistence to ecosystem functioning: a conceptual framework from ecological first principles in grassland ecosystems. Advances in Ecological Research, 2019, 61, 265-296.	1.4	3
84	Pollinators of Chapmannia floridana (Fabaceae) and Their Foraging Preferences. Florida Entomologist, 1998, 81, 489.	0.2	2
85	The early response of subtropical tussock grasslands to restoration treatments. Restoration Ecology, 2017, 25, 689-695.	1.4	2
86	Looks can be deceiving: ecologically similar exotics have different impacts on a native competitor. Oecologia, 2019, 190, 927-940.	0.9	2
87	Catalytic potential of pollination services to reconcile conservation and agricultural production: a spatial optimization framework. Environmental Research Letters, 2021, 16, 064098.	2.2	2
88	Drivers of <i>Acacia</i> and <i>Eucalyptus</i> growth rate differ in strength and direction in restoration plantings across Australia. Ecological Applications, 2022, , e2636.	1.8	2
89	Positive effects of exotic species dampened by neighborhood heterogeneity. Ecology, 2022, 103, .	1.5	2
90	Mistletoe The Genus Viscum, Economic Botany, 2002, 56, 207-207	0.8	0

e The Genus Viscum. Economic Botany, 2002, 56, 207-207.

0.8