
Carole Lamonier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4837696/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	First in situ temperature quantification of CoMoS species upon gas sulfidation enabled by new insight on cobalt sulfide formation. Catalysis Today, 2021, 377, 114-126.	4.4	13
2	Bulk hydrotreating MonW12-nS2 catalysts based on SiMonW12-n heteropolyacids prepared by alumina elimination method. Catalysis Today, 2021, 377, 26-37.	4.4	4
3	The effect of the Mo/W ratio on the catalytic properties of alumina supported hydrotreating catalysts prepared from mixed SiMo6W6 and SiMo9W3 heteropolyacids. Catalysis Today, 2021, 377, 100-113.	4.4	12
4	Ultrasound assisted oxidative desulfurization of marine fuels on MoO3/Al2O3 catalyst. Catalysis Today, 2021, 377, 221-228.	4.4	12
5	Effect of aluminium incorporation on physicochemical properties and patent blue V photodegradation of magnesium phosphate materials. Bulletin of Materials Science, 2021, 44, 1.	1.7	5
6	Study of hydrotreating performance of trimetallic NiMoW/Al2O3 catalysts prepared from mixed MoW Keggin heteropolyanions with various Mo/W ratios. Journal of Catalysis, 2021, 403, 141-159.	6.2	8
7	Genesis of active phase in MoW/Al2O3 hydrotreating catalysts monitored by HAADF and in situ QEXAFS combined to MCR-ALS analysis. Applied Catalysis B: Environmental, 2020, 269, 118766.	20.2	13
8	New Bimetallic Hydrotreating Catalyst MoWS2 Based on Heteropoly Acid SiMo3W9 and Mesostructured Silicate COK-12. Petroleum Chemistry, 2020, 60, 616-621.	1.4	0
9	Hydrotreating of Straight-Run Diesel Fraction over Mixed NiMoWS/Al2O3 Sulfide Catalysts. Petroleum Chemistry, 2019, 59, 529-534.	1.4	1
10	Effect of Quinoline on Hydrodesulfurization and Hydrogenation on Bi- and Trimetallic NiMo(W)/Al2O3 Hydrotreating Catalysts. Russian Journal of Applied Chemistry, 2019, 92, 105-112.	0.5	5
11	Highly Active Bulk Mo(W)S2 Hydrotreating Catalysts Synthesized by Etching out of the Carrier from Supported Mono- and Bimetallic Sulfides. Petroleum Chemistry, 2019, 59, S53-S59.	1.4	1
12	Activity of Mo(W)S2/SBA-15 Catalysts Synthesized from SiMoW Heteropoly Acids in 4,6-Dimethyldibenzothiophene Hydrodesulfurization. Petroleum Chemistry, 2019, 59, 1293-1299.	1.4	1
13	W-SBA based materials as efficient catalysts for the ODS of model and real feeds: Improvement of their lifetime through active phase encapsulation. Applied Catalysis A: General, 2019, 571, 42-50.	4.3	22
14	Enhancing the hydrodesulfurization of 4,6-dimethyldibenzothiophene through the use of mixed MoWS2 phase evidenced by HAADF. Catalysis Today, 2019, 329, 24-34.	4.4	19
15	Sulfur compounds reactivity in the ODS of model and real feeds on W–SBA based catalysts. RSC Advances, 2018, 8, 13714-13721.	3.6	18
16	MoW synergetic effect supported by HAADF for alumina based catalysts prepared from mixed SiMonW12-n heteropolyacids. Applied Catalysis B: Environmental, 2018, 224, 951-959.	20.2	33
17	Trimetallic Hydrotreating Catalysts CoMoW/Al2O3 and NiMoW/Al2O3 Prepared on the Basis of Mixed Mo-W Heteropolyacid: Difference in Synergistic Effects. Petroleum Chemistry, 2018, 58, 1198-1205.	1.4	12
18	Molecular approach to prepare mixed MoW alumina supported hydrotreatment catalysts using H ₄ SiMo _n W _{12â^'n} O ₄₀ heteropolyacids. Catalysis Science and Technology, 2018, 8, 5557-5572.	4.1	20

CAROLE LAMONIER

#	Article	IF	CITATIONS
19	Oxidative Desulfurization of Heavy Oils with High Sulfur Content: A Review. Catalysts, 2018, 8, 344.	3.5	149
20	Hierarchical porous titanium terephthalate based material with highly active sites for deep oxidative desulfurization. Microporous and Mesoporous Materials, 2018, 270, 241-247.	4.4	25
21	Transportation fuels: Desulfurizing diesel. Nature Energy, 2017, 2, .	39.5	13
22	Guerbet Reaction over Strontium‣ubstituted Hydroxyapatite Catalysts Prepared at Various (Ca+Sr)/P Ratios. ChemCatChem, 2017, 9, 2250-2261.	3.7	30
23	Diesel HDS performance of alumina supported CoMoP catalysts modified by sulfone molecules produced by ODS process. Fuel, 2017, 210, 666-673.	6.4	14
24	Direct synthesis of methyl mercaptan from H 2 /CO/H 2 S using tungsten based supported catalysts: Investigation of the active phase. Catalysis Today, 2017, 292, 143-153.	4.4	20
25	Strategy to produce highly loaded alumina supported CoMo-S catalyst for straight run gas oil hydrodesulfurization. Applied Catalysis A: General, 2017, 530, 145-153.	4.3	13
26	Application of Heteropolyacid H4SiMo3W9O40 for the Preparation of Bimetallic MoWS2/Al2O3 Hydrotreatment Catalysts. Kinetics and Catalysis, 2017, 58, 825-832.	1.0	4
27	Trimetallic NiMoW/Al2O3 hydrotreating catalyst based on H4SiMo3W9O40 mixed heteropoly acid. Russian Journal of Applied Chemistry, 2017, 90, 1122-1129.	0.5	7
28	Improvement of HDS catalysts through the modification of the oxidic precursor with 1,5-pentanediol: Gas phase sulfidation and thiophene conversion. Comptes Rendus Chimie, 2016, 19, 1286-1302.	0.5	7
29	Hydroprocessing catalysts based on transition metal sulfides prepared from Anderson and dimeric Co2Mo10-heteropolyanions. A review. Comptes Rendus Chimie, 2016, 19, 1276-1285.	0.5	27
30	Potential of templated mesoporous aluminas as supports for HDS CoMo catalysts. New Journal of Chemistry, 2016, 40, 4258-4268.	2.8	6
31	Hierarchization of Mordenite as NiW Sulfide Catalysts Support: Towards Efficient Hydrodesulfurization. ChemCatChem, 2015, 7, 3936-3944.	3.7	11
32	Effect of post treatment on the local structure of hierarchical Beta prepared by desilication and the catalytic performance in Friedel–Crafts alkylation. Microporous and Mesoporous Materials, 2015, 206, 42-51.	4.4	40
33	High resolution NMR unraveling Cu substitution of Mg in hydrotalcites–ethanol reactivity. Applied Catalysis A: General, 2015, 504, 533-541.	4.3	14
34	Niobiumâ€Based Nickel–Tungsten Hydrotreatment Catalysts with Enhanced Isomerization Properties. ChemCatChem, 2015, 7, 297-302.	3.7	3
35	Niobium–Containing Lindqvist Isopolyanions [Nb <i>_x</i> W _{6–<i>x</i>} O ₁₉] ^{(2+<i>x</i>)–} Used as Precursors for Hydrodesulfurization Catalysts with Isomerization Properties. European Journal of Inorganic Chemistry. 2015. 2015. 2067-2075.	2.0	10
36	Reactivity of ethanol over hydroxyapatite-based Ca-enriched catalysts with various carbonate contents. Catalysis Science and Technology, 2015, 5, 2994-3006.	4.1	72

CAROLE LAMONIER

#	Article	IF	CITATIONS
37	Probing the Nature of the Active Phase of Molybdenum-Supported Catalysts for the Direct Synthesis of Methylmercaptan from Syngas and H ₂ S. ACS Catalysis, 2015, 5, 2966-2981.	11.2	54
38	Restraining deactivation of hierarchical zeolite supported NiW catalysts in the HDS of thiophene. RSC Advances, 2015, 5, 74150-74158.	3.6	5
39	Tuning Hydrodesulfurization Activeâ€Phase Dispersion using Optimized Mesoporous Titaniaâ€Đoped Silica Supports. ChemCatChem, 2014, 6, 328-338.	3.7	16
40	Increase of the Ni/W Ratio in Heteropolyanions Based NiW Hydrocracking Catalysts with Improved Catalytic Performances. Catalysis Letters, 2014, 144, 460-468.	2.6	14
41	Structural, textural and acid–base properties of carbonate-containing hydroxyapatites. Journal of Materials Chemistry A, 2014, 2, 11073-11090.	10.3	102
42	Enhancement of catalytic performance in the benzylation of benzene with benzyl alcohol over hierarchical mordenite. Journal of Catalysis, 2013, 306, 100-108.	6.2	52
43	Transesterification of Diethyl Oxalate with Phenol over Sol–Gel MoO ₃ /TiO ₂ Catalysts. ChemSusChem, 2012, 5, 1467-1473.	6.8	25
44	Effect of calcination temperature on the structure of vanadium phosphorus oxide materials and their catalytic activity in the decomposition of 2-propanol. Journal of Saudi Chemical Society, 2012, 16, 445-449.	5.2	6
45	Oneâ€Pot Sol–Gel Preparation for Efficient Cobalt–Molybdenum–Titania Hydrotreating Catalysts. ChemCatChem, 2012, 4, 2112-2120.	3.7	6
46	Active phase genesis of NiW hydrocracking catalysts based on nickel salt heteropolytungstate: Comparison with reference catalyst. Applied Catalysis B: Environmental, 2012, 126, 55-63.	20.2	47
47	Infrared investigation on surface properties of alumina obtained using recent templating routes. Microporous and Mesoporous Materials, 2012, 158, 88-98.	4.4	22
48	Influence of acid–base properties of cobalt–molybdenum catalysts supported on magnesium orthophosphates in isomerization of 3,3-dimethylbut-1-ene. Arabian Journal of Chemistry, 2011, 4, 449-457.	4.9	10
49	Selective conversion of {Mo132} Keplerate ion into 4-electron reduced crown-capped Keggin derivative [Te5Mo15O57]8â^. A key intermediate to single-phase M1 multielement MoVTeO light-alkanes oxidation catalyst. Chemical Communications, 2011, 47, 6413.	4.1	32
50	Specific tuning of acid/base sites in apatite materials to enhance their methanol thiolation catalytic performances. Catalysis Today, 2011, 164, 124-130.	4.4	38
51	Calcium-Deficient and Stoichiometric Hydroxyapatites Promoted by Cobalt for the Catalytic Removal of Oxygenated Volatile Organic Compounds. Catalysis Letters, 2010, 135, 197-206.	2.6	31
52	New Mo–V based oxidic precursor for the hydrotreatment of residues. Applied Catalysis B: Environmental, 2010, 98, 39-48.	20.2	23
53	Study of the active phase of NiW hydrocracking sulfided catalysts obtained from an innovative heteropolyanion based preparation. Catalysis Today, 2010, 150, 207-212.	4.4	55
54	Mesoporous TiO2-SBA15 composites used as supports for molybdenum-based hydrotreating catalysts. Studies in Surface Science and Catalysis, 2010, , 587-591.	1.5	3

CAROLE LAMONIER

#	Article	IF	CITATIONS
55	Al13–[X–Mo/WOn] (X=Al, Co, V, P) composites as catalysts in clean oxidation of aromatic sulfides. Applied Catalysis B: Environmental, 2010, 100, 254-263.	20.2	17
56	Preparation of new oxidic precursors based on heteropolyanions for efficient hydrocracking catalysts. Comptes Rendus Chimie, 2009, 12, 692-698.	0.5	8
57	New apatite-based supports prepared by industrial phosphoric acid for HDS catalyst synthesis. Comptes Rendus Chimie, 2009, 12, 677-682.	0.5	7
58	Synthesis, Characterization, and Catalytic Performances of Novel CoMo Hydrodesulfurization Catalysts Supported on Mesoporous Aluminas. Chemistry of Materials, 2009, 21, 522-533.	6.7	53
59	Use of the cobalt salt of the heteropolyanion [Co2Mo10O38H4]6â^ for the preparation of CoMo HDS catalysts supported on Al2O3, TiO2 and ZrO2. Catalysis Today, 2008, 130, 41-49.	4.4	69
60	Influence of the nature of precipitating basic agent on the synthesis of catalytic magnesium phosphate materials. Solid State Sciences, 2008, 10, 434-437.	3.2	11
61	New insight in the preparation of alumina supported hydrotreatment oxidic precursors: A molecular approach. Applied Catalysis A: General, 2007, 322, 33-45.	4.3	92
62	Synthesis and spectroscopic 27Al NMR and Raman characterization of new materials based on the assembly of isopolycation and Co–Cr and Anderson heteropolyanions. Journal of Molecular Structure, 2007, 841, 96-103.	3.6	15
63	Molybdocobaltate cobalt salts: New starting materials for hydrotreating catalysts. Applied Catalysis B: Environmental, 2007, 70, 548-556.	20.2	65
64	Origin of the dispersion limit in the preparation of Ni(Co)Mo/Al2O3 and Ni(Co)Mo/TiO2 HDS oxidic precursors. Studies in Surface Science and Catalysis, 2006, 162, 713-720.	1.5	6
65	Evidence and Characterization of a New Decamolybdocobaltate Cobalt Salt:Â An Efficient Precursor for Hydrotreatment Catalyst Preparation. Chemistry of Materials, 2005, 17, 4438-4448.	6.7	51
66	Preparation and Characterization of 6-Molybdocobaltate and 6-Molybdoaluminate Cobalt Salts. Evidence of a New Heteropolymolybdate Structure ChemInform, 2004, 35, no.	0.0	0
67	Preparation and Characterization of 6-Molybdocobaltate and 6-Molybdoaluminate Cobalt Salts. Evidence of a New Heteropolymolybdate Structure. Inorganic Chemistry, 2004, 43, 4636-4644.	4.0	76
68	Relationship between Structure of CeNiXOY Mixed Oxides and Catalytic Properties in Oxidative Dehydrogenation of Propane. Langmuir, 2001, 17, 1511-1517.	3.5	47
69	The Anderson-type heteropolyanions in the synthesis of alumina-and zeolite-supported HDS oxidic precursors. Studies in Surface Science and Catalysis, 2000, 143, 141-148.	1.5	5
70	CeNixOy and CeAlzNixOy solids studied by electron microscopy, XRD, XPS and depth sputtering techniques. Physical Chemistry Chemical Physics, 2000, 2, 303-312.	2.8	48
71	Storage of reactive hydrogen species in CeMxOy (M = Cu, Ni; 0≤â‰Â≇) mixed oxides. International Jou of Hydrogen Energy, 1999, 24, 1083-1092.	ırnal 7.1	27
72	Studies of the cerium-metal–oxygen–hydrogen system (metal=Cu, Ni). Catalysis Today, 1999, 50, 247-259.	4.4	133

#	Article	IF	CITATIONS
73	Effect of incorporation of copper or nickel on hydrogen storage in ceria. Mechanism of reduction. Journal of the Chemical Society, Faraday Transactions, 1996, 92, 2001-2009.	1.7	102