Dimitrios Ladakis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4837575/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Integrated biorefinery development using winery waste streams for the production of bacterial cellulose, succinic acid and value-added fractions. Bioresource Technology, 2022, 343, 125989.	9.6	39
2	Techno-economic risk assessment, life cycle analysis and life cycle costing for poly(butylene) Tj ETQq0 0 0 rgBT Environment, 2022, 806, 150594.	/Overlock 8.0	10 Tf 50 707 29
3	Techno-economic evaluation and life cycle assessment of a biorefinery using winery waste streams for the production of succinic acid and value-added co-products. Bioresource Technology, 2022, 348, 126295.	9.6	27
4	Techno-economic evaluation and life-cycle assessment of integrated biorefineries within a circular bioeconomy concept. , 2022, , 541-556.		1
5	Sustainable arabitol production by a newly isolated Debaryomyces prosopidis strain cultivated on biodiesel-derived glycerol. Carbon Resources Conversion, 2022, 5, 92-99.	5.9	18
6	Biorefinery development, techno-economic evaluation and environmental impact analysis for the conversion of the organic fraction of municipal solid waste into succinic acid and value-added fractions. Bioresource Technology, 2022, 354, 127172.	9.6	22
7	Techno-economic evaluation and life-cycle assessment of poly(3-hydroxybutyrate) production within a biorefinery concept using sunflower-based biodiesel industry by-products. Bioresource Technology, 2021, 326, 124711.	9.6	29
8	Optimization of fermentation medium for succinic acid production using Basfia succiniciproducens. Environmental Technology and Innovation, 2021, 24, 101914.	6.1	13
9	A Comprehensive Bioprocessing Approach to Foster Cheese Whey Valorization: On-Site β-Galactosidase Secretion for Lactose Hydrolysis and Sequential Bacterial Cellulose Production. Fermentation, 2021, 7, 184.	3.0	10
10	Bioprocess development using organic biowaste and sustainability assessment of succinic acid production with engineered Yarrowia lipolytica strain. Biochemical Engineering Journal, 2021, 174, 108099.	3.6	27
11	Integrated biorefinery development for the extraction of value-added components and bacterial cellulose production from orange peel waste streams. Renewable Energy, 2020, 160, 944-954.	8.9	64
12	Sustainable production of bio-based chemicals and polymers via integrated biomass refining and bioprocessing in a circular bioeconomy context. Bioresource Technology, 2020, 307, 123093.	9.6	104
13	Evaluation of organic fractions of municipal solid waste as renewable feedstock for succinic acid production. Biotechnology for Biofuels, 2020, 13, 72.	6.2	47
14	Evaluation of 1,3-propanediol production by twoCitrobacter freundiistrains using crude glycerol and soybean cake hydrolysate. Environmental Science and Pollution Research, 2019, 26, 35523-35532.	5.3	30
15	Direct electrochemical extraction increases microbial succinic acid production from spent sulphite liquor. Green Chemistry, 2019, 21, 2401-2411.	9.0	19
16	Restructuring the Conventional Sugar Beet Industry into a Novel Biorefinery: Fractionation and Bioconversion of Sugar Beet Pulp into Succinic Acid and Value-Added Coproducts. ACS Sustainable Chemistry and Engineering, 2019, 7, 6569-6579.	6.7	70
17	Synthesis and Characterization of Bacterial Cellulose from Citrus-Based Sustainable Resources. ACS Omega, 2018, 3, 10365-10373.	3.5	58
18	Valorization of spent sulphite liquor for succinic acid production via continuous fermentation system. Biochemical Engineering Journal, 2018, 137, 262-272.	3.6	22

DIMITRIOS LADAKIS

#	Article	IF	CITATIONS
19	Stability of double emulsions with PGPR, bacterial cellulose and whey protein isolate. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 522, 445-452.	4.7	35
20	Magnetically modified bacterial cellulose: A promising carrier for immobilization of affinity ligands, enzymes, and cells. Materials Science and Engineering C, 2017, 71, 214-221.	7.3	25
21	Pretreatment of spent sulphite liquor via ultrafiltration and nanofiltration for bio-based succinic acid production. Journal of Biotechnology, 2016, 233, 95-105.	3.8	34
22	Bacterial Cellulose Production from Industrial Waste and by-Product Streams. International Journal of Molecular Sciences, 2015, 16, 14832-14849.	4.1	235