List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/483751/publications.pdf Version: 2024-02-01

		14124	14386
245	19,678	69	132
papers	citations	h-index	g-index
252	252	252	9734
all docs	docs citations	times ranked	citing authors

XIIN SHI

#	Article	IF	CITATIONS
1	Entropy engineering induced exceptional thermoelectric and mechanical performances in Cu2-Ag Te1-2S Se. Acta Materialia, 2022, 224, 117512.	3.8	36
2	Enhanced thermal stability and oxidation resistance in La3-Te4 by compositing metallic nickel particles. Acta Materialia, 2022, 224, 117526.	3.8	6
3	Phase-modulated mechanical and thermoelectric properties of Ag2S1-xTex ductile semiconductors. Journal of Materiomics, 2022, 8, 656-661.	2.8	31
4	Novel meta-phase arising from large atomic size mismatch. Matter, 2022, 5, 605-615.	5.0	20
5	A Fully Flexible Intelligent Thermal Touch Panel Based on Intrinsically Plastic Ag ₂ S Semiconductor. Advanced Materials, 2022, 34, e2107479.	11.1	23
6	Key properties of inorganic thermoelectric materials—tables (version 1). JPhys Energy, 2022, 4, 022002.	2.3	51
7	Towards a better understanding of the forming and resistive switching behavior of Ti-doped HfO _{<i>x</i>} RRAM. Journal of Materials Chemistry C, 2022, 10, 5896-5904.	2.7	16
8	Thermoelectric Performance Optimization of n-Type La3â^'xSmxTe4/Ni Composites via Sm Doping. Energies, 2022, 15, 2353.	1.6	1
9	Exceptionally Heavy Doping Boosts the Performance of Iron Silicide for Refractory Thermoelectrics. Advanced Energy Materials, 2022, 12, .	10.2	17
10	Structural Modularization of Cu ₂ Te Leading to High Thermoelectric Performance near the Mott–loffe–Regel Limit. Advanced Materials, 2022, 34, e2108573.	11.1	20
11	Phase Transition Behaviors and Thermoelectric Properties of CuAgTe _{1–<i>x</i>} Se _{<i>x</i>} near 400 K. ACS Applied Materials & Interfaces, 2022, 14, 1015-1023.	4.0	6
12	High-Throughput Screening for Thermoelectric Semiconductors with Desired Conduction Types by Energy Positions of Band Edges. Journal of the American Chemical Society, 2022, 144, 8030-8037.	6.6	13
13	Considering the Role of Ion Transport in Diffusonâ€Đominated Thermal Conductivity. Advanced Energy Materials, 2022, 12, .	10.2	27
14	High Performance Full-Inorganic Flexible Memristor with Combined Resistance-Switching. ACS Applied Materials & Interfaces, 2022, 14, 21173-21180.	4.0	21
15	Impact of oxygen concentration at the HfOx/Ti interface on the behavior of HfOx filamentary memristors. Journal of Materials Science, 2022, 57, 9299-9311.	1.7	8
16	High-Performance and Stable (Ag, Cd)-Containing ZnSb Thermoelectric Compounds. ACS Applied Materials & Interfaces, 2022, 14, 26662-26670.	4.0	6
17	Data-driven discovery of high-performance multicomponent solid solution thermoelectric materials. Materials Today Energy, 2022, 28, 101070.	2.5	1
18	Roomâ€ŧemperature plastic inorganic semiconductors for flexible and deformable electronics. InformaÄnÃ-Materiály, 2021, 3, 22-35.	8.5	55

#	Article	IF	CITATIONS
19	Creep behavior and post-creep thermoelectric performance of the n-type Skutterudite alloy Yb0.3Co4Sb12. Journal of Materiomics, 2021, 7, 89-97.	2.8	9
20	Organic thermoelectric materials. , 2021, , 183-219.		9
21	Design and fabrication of thermoelectric devices. , 2021, , 221-267.		2
22	Strategies to optimize thermoelectric performance. , 2021, , 19-50.		1
23	Measurement of thermoelectric properties. , 2021, , 51-80.		0
24	Review of inorganic thermoelectric materials. , 2021, , 81-145.		1
25	Thermopower and harvesting heat. Science, 2021, 371, 343-344.	6.0	80
26	Application of Entropy Engineering in Thermoelectrics. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2021, 36, 347.	0.6	11
27	High efficiency GeTe-based materials and modules for thermoelectric power generation. Energy and Environmental Science, 2021, 14, 995-1003.	15.6	101
28	Ductile Ag ₂₀ S ₇ Te ₃ with Excellent Shapeâ€Conformability and High Thermoelectric Performance. Advanced Materials, 2021, 33, e2007681.	11.1	65
29	Ultralow Lattice Thermal Conductivity and Superhigh Thermoelectric Figureâ€ofâ€Merit in (Mg, Bi) Coâ€Doped GeTe. Advanced Materials, 2021, 33, e2008773.	11.1	112
30	Effect of Cu-doping on the magnetic and electrical transport properties of three-quarter Heusler alloy ZrCo1.5Sn. Journal of Applied Physics, 2021, 129, 125106.	1.1	3
31	Parallel Dislocation Networks and Cottrell Atmospheres Reduce Thermal Conductivity of PbTe Thermoelectrics. Advanced Functional Materials, 2021, 31, 2101214.	7.8	41
32	pâ€Type Plastic Inorganic Thermoelectric Materials. Advanced Energy Materials, 2021, 11, 2100883.	10.2	40
33	Quantifying charge carrier localization in chemically doped semiconducting polymers. Nature Materials, 2021, 20, 1414-1421.	13.3	61
34	Recent Developments in Flexible Thermoelectric Devices. Small Science, 2021, 1, 2100005.	5.8	74
35	Thermoelectric materials with crystal-amorphicity duality induced by large atomic size mismatch. Joule, 2021, 5, 1183-1195.	11.7	27
36	Uncovering design principles for amorphous-like heat conduction using two-channel lattice dynamics. Materials Today Physics, 2021, 18, 100344.	2.9	42

#	Article	IF	CITATIONS
37	Thermal Transport across Metal/Ĵ²-Ga ₂ O ₃ Interfaces. ACS Applied Materials & Interfaces, 2021, 13, 29083-29091.	4.0	21
38	Thermoelectrics: pâ€Type Plastic Inorganic Thermoelectric Materials (Adv. Energy Mater. 23/2021). Advanced Energy Materials, 2021, 11, 2170086.	10.2	4
39	Nano-scale compositional oscillation and phase intergrowth in Cu2S0.5Se0.5 and their role in thermal transport. Journal of Materials Science and Technology, 2021, 79, 222-229.	5.6	3
40	Novel Ultrahigh-Performance ZnO-Based Varistor Ceramics. ACS Applied Materials & Interfaces, 2021, 13, 35924-35929.	4.0	22
41	Atomic size mismatch: What if it is too large?. Matter, 2021, 4, 2618-2619.	5.0	3
42	Accelerating the Discovery of Cu–Sn–S Thermoelectric Compounds via High-Throughput Synthesis, Characterization, and Machine Learning-Assisted Image Analysis. Chemistry of Materials, 2021, 33, 6918-6924.	3.2	8
43	Investigation on Low-Temperature Thermoelectric Properties of Ag ₂ Se Polycrystal Fabricated by Using Zone-Melting Method. Journal of Physical Chemistry Letters, 2021, 12, 8246-8255.	2.1	37
44	Thermoreflectance Imaging of (Ultra)wide Band-Gap Devices with MoS ₂ Enhancement Coatings. ACS Applied Materials & Interfaces, 2021, 13, 42195-42204.	4.0	7
45	Enhanced thermoelectric performance in ductile Ag2S-based materials via doping iodine. Applied Physics Letters, 2021, 119, .	1.5	22
46	Thermal transport in defective and disordered materials. Applied Physics Reviews, 2021, 8, .	5.5	45
47	Intrinsic lamellar defects containing atomic Cu in Cu ₂ X (X = S, Se) thermoelectric materials. Journal of Materials Chemistry C, 2021, 9, 4173-4181.	2.7	7
48	Low-dimensional and nanocomposite thermoelectric materials. , 2021, , 147-182.		0
49	A low-cost and eco-friendly Br-doped Cu ₇ Sn ₃ S ₁₀ thermoelectric compound with <i>zT</i> around unity. Journal of Materials Chemistry A, 2021, 9, 7946-7954.	5.2	23
50	Efficient lanthanide Gd doping promoting the thermoelectric performance of Mg ₃ Sb ₂ -based materials. Journal of Materials Chemistry A, 2021, 9, 25944-25953.	5.2	19
51	Thermoelectric properties and service stability of Ag-containing Cu2Se. Materials Today Physics, 2021, 21, 100550.	2.9	15
52	Sprayable β-FeSi2 composite hydrogel for portable skin tumor treatment and wound healing. Biomaterials, 2021, 279, 121225.	5.7	43
53	High-performance n-type Ta ₄ SiTe ₄ /polyvinylidene fluoride (PVDF)/graphdiyne organic–inorganic flexible thermoelectric composites. Energy and Environmental Science, 2021, 14, 6586-6594.	15.6	19
54	Thermoelectric Ag ₂ Se: Imperfection, Homogeneity, and Reproducibility. ACS Applied Materials & Interfaces, 2021, 13, 60192-60199.	4.0	28

#	Article	IF	CITATIONS
55	Enhanced Thermoelectric Properties of Cu _x Se (1.75≤ â‰ 2 .10) during Phase Transitions. Chinese Physics Letters, 2021, 38, 117201.	1.3	7
56	Decoupling Thermoelectric Performance and Stability in Liquid‣ike Thermoelectric Materials. Advanced Science, 2020, 7, 1901598.	5.6	36
57	Recent Advances in Liquidâ€Like Thermoelectric Materials. Advanced Functional Materials, 2020, 30, 1903867.	7.8	148
58	Conformal organic–inorganic semiconductor composites for flexible thermoelectrics. Energy and Environmental Science, 2020, 13, 511-518.	15.6	67
59	A combined experiment and first-principles study on lattice dynamics of thermoelectric CuInTe2. Journal of Alloys and Compounds, 2020, 822, 153610.	2.8	14
60	Crystal Structure and Thermoelectric Properties of Cu ₂ Fe _{1–<i>x</i>} Mn _{<i>x</i>} SnSe ₄ Diamond-like Chalcogenides. ACS Applied Energy Materials, 2020, 3, 2137-2146.	2.5	15
61	Enhanced Thermoelectric Performance and Service Stability of Cu ₂ Se Via Tailoring Chemical Compositions at Multiple Atomic Positions. Advanced Functional Materials, 2020, 30, 1908315.	7.8	46
62	Exceptional plasticity in the bulk single-crystalline van der Waals semiconductor InSe. Science, 2020, 369, 542-545.	6.0	163
63	Discovery of high-performance thermoelectric copper chalcogenide using modified diffusion-couple high-throughput synthesis and automated histogram analysis technique. Energy and Environmental Science, 2020, 13, 3041-3053.	15.6	43
64	Ternary Compounds Cu ₃ <i>R</i> Te ₃ (<i>R</i> = Y, Sm, and Dy): A Family of New Thermoelectric Materials with Trigonal Structures. ACS Applied Materials & Interfaces, 2020, 12, 40486-40494.	4.0	3
65	Cu ₂ Se-Based liquid-like thermoelectric materials: looking back and stepping forward. Energy and Environmental Science, 2020, 13, 3307-3329.	15.6	106
66	Electrode interface optimization advances conversion efficiency and stability of thermoelectric devices. Nature Communications, 2020, 11, 2723.	5.8	101
67	Good stability and high thermoelectric performance of Fe doped Cu _{1.80} S. Physical Chemistry Chemical Physics, 2020, 22, 7374-7380.	1.3	22
68	The order–disorder transition in Cu ₂ Se and medium-range ordering in the high-temperature phase. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2020, 76, 201-207.	0.5	11
69	Interfacial behaviors of p-type CeyFexCo4–xSb12/Nb thermoelectric joints. Functional Materials Letters, 2020, 13, 2051020.	0.7	2
70	Analytical Models of Phonon–Point-Defect Scattering. Physical Review Applied, 2020, 13, .	1.5	55
71	Electronic origin of the enhanced thermoelectric efficiency of Cu2Se. Science Bulletin, 2020, 65, 1888-1893.	4.3	11
72	Number mismatch between cations and anions as an indicator for low lattice thermal conductivity in chalcogenides. Npj Computational Materials, 2020, 6, .	3.5	13

#	Article	IF	CITATIONS
73	Anion-site-modulated thermoelectric properties in Ge2Sb2Te5-based compounds. Rare Metals, 2020, 39, 1127-1133.	3.6	12
74	Doubled Thermoelectric Figure of Merit in p-Type β-FeSi ₂ via Synergistically Optimizing Electrical and Thermal Transports. ACS Applied Materials & Interfaces, 2020, 12, 12901-12909.	4.0	21
75	Cu3ErTe3: a new promising thermoelectric material predicated by high-throughput screening. Materials Today Physics, 2020, 12, 100180.	2.9	20
76	Thermoelectric Properties of Nanoâ€grained Mooihoekite Cu ₉ Fe ₉ S ₁₆ . Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2020, 646, 1116-1121.	0.6	11
77	Alloy scattering of phonons. Materials Horizons, 2020, 7, 1452-1456.	6.4	39
78	Crystalline Structure-Dependent Mechanical and Thermoelectric Performance in Ag2Se1â€xSx System. Research, 2020, 2020, 6591981.	2.8	55
79	Thermal Conductivity during Phase Transitions. Advanced Materials, 2019, 31, e1806518.	11.1	80
80	Copper chalcogenide thermoelectric materials. Science China Materials, 2019, 62, 8-24.	3.5	111
81	Ru Alloying Induced Enhanced Thermoelectric Performance in FeSi2-Based Compounds. ACS Applied Materials & Interfaces, 2019, 11, 32151-32158.	4.0	17
82	Ultralow Thermal Conductivity and High-Temperature Thermoelectric Performance in n-Type K _{2.5} Bi _{8.5} Se ₁₄ . Chemistry of Materials, 2019, 31, 5943-5952.	3.2	25
83	High-Efficiency and Stable Thermoelectric Module Based on Liquid-Like Materials. Joule, 2019, 3, 1538-1548.	11.7	126
84	Are Cu ₂ Teâ€Based Compounds Excellent Thermoelectric Materials?. Advanced Materials, 2019, 31, e1903480.	11.1	72
85	Largely Enhanced Seebeck Coefficient and Thermoelectric Performance by the Distortion of Electronic Density of States in Ge ₂ Sb ₂ Te ₅ . ACS Applied Materials & Interfaces, 2019, 11, 34046-34052.	4.0	38
86	Flexible thermoelectrics: from silver chalcogenides to full-inorganic devices. Energy and Environmental Science, 2019, 12, 2983-2990.	15.6	188
87	Thermoelectric properties of non-stoichiometric Cu2+ <i>x</i> Sn1â^' <i>x</i> S3 compounds. Journal of Applied Physics, 2019, 126, .	1.1	35
88	Lattice dynamics of thermoelectric palladium sulfide. Journal of Alloys and Compounds, 2019, 798, 484-492.	2.8	11
89	Flexible Thermoelectric Materials and Generators: Challenges and Innovations. Advanced Materials, 2019, 31, e1807916.	11.1	419
90	Ultrahigh figureâ€ofâ€merit of Cu ₂ Se incorporated with carbon coated boron nanoparticles. InformaÄnĀ-Materiály, 2019, 1, 108-115.	8.5	47

#	Article	IF	CITATIONS
91	Thermodynamics, kinetics and electronic properties of point defects in β-FeSi ₂ . Physical Chemistry Chemical Physics, 2019, 21, 10497-10504.	1.3	15
92	Enhanced Thermoelectric Performance of Quaternary Cu _{2–2<i>x</i>} Ag _{2<i>x</i>} Se _{1–<i>x</i>} S <i>_x</i> Liquid-like Chalcogenides. ACS Applied Materials & Interfaces, 2019, 11, 13433-13440.	4.0	38
93	Thermoelectric properties of n-type Cu ₄ Sn ₇ S ₁₆ -based compounds. RSC Advances, 2019, 9, 7826-7832.	1.7	26
94	Nanoscale pores plus precipitates rendering high-performance thermoelectric SnTe1-xSex with refined band structures. Nano Energy, 2019, 60, 1-7.	8.2	86
95	Aguilarite Ag ₄ SSe Thermoelectric Material: Natural Mineral with Low Lattice Thermal Conductivity. ACS Applied Materials & Interfaces, 2019, 11, 12632-12638.	4.0	30
96	Lattice Softening Significantly Reduces Thermal Conductivity and Leads to High Thermoelectric Efficiency. Advanced Materials, 2019, 31, e1900108.	11.1	171
97	Superior performance and high service stability for GeTe-based thermoelectric compounds. National Science Review, 2019, 6, 944-954.	4.6	96
98	Quasi-two-dimensional GeSbTe compounds as promising thermoelectric materials with anisotropic transport properties. Applied Physics Letters, 2019, 114, .	1.5	23
99	Nanoscale Behavior and Manipulation of the Phase Transition in Singleâ€Crystal Cu ₂ Se. Advanced Materials, 2019, 31, e1804919.	11.1	31
100	Thermoelectric properties of Ag ₂ S superionic conductor with intrinsically low lattice thermal conductivity. Wuli Xuebao/Acta Physica Sinica, 2019, 68, 090201.	0.2	25
101	Improved electrical transport properties and optimized thermoelectric figure of merit in lithium-doped copper sulfides. Rare Metals, 2018, 37, 282-289.	3.6	27
102	Significantly optimized thermoelectric properties in high-symmetry cubic Cu ₇ PSe ₆ compounds <i>via</i> entropy engineering. Journal of Materials Chemistry A, 2018, 6, 6493-6502.	5.2	55
103	Improved Thermoelectric Performance in Nonstoichiometric Cu _{2+Î} Mn _{1â~Î} SnSe ₄ Quaternary Diamondlike Compounds. ACS Applied Materials & Interfaces, 2018, 10, 10123-10131.	4.0	24
104	Thermoelectric properties of polycrystalline palladium sulfide. RSC Advances, 2018, 8, 13154-13158.	1.7	14
105	Multiple phase transitions and structural oscillations in thermoelectric Cu2S at elevating temperatures. Ceramics International, 2018, 44, 13076-13081.	2.3	10
106	Room-temperature ductile inorganic semiconductor. Nature Materials, 2018, 17, 421-426.	13.3	262
107	Minimum thermal conductivity in the context of <i>diffuson</i> -mediated thermal transport. Energy and Environmental Science, 2018, 11, 609-616.	15.6	221
108	Intrinsically High Thermoelectric Performance in AgInSe ₂ nâ€īype Diamond‣ike Compounds. Advanced Science, 2018, 5, 1700727.	5.6	66

#	Article	IF	CITATIONS
109	Thermoelectric properties of Cu ₂ Se _{1â^'x} Te _x solid solutions. Journal of Materials Chemistry A, 2018, 6, 6977-6986.	5.2	70
110	Pressure-induced superconductivity in palladium sulfide. Journal of Physics Condensed Matter, 2018, 30, 155703.	0.7	8
111	Synthesis and Thermoelectric Properties of Charge-Compensated S _{<i>y</i>} Pd _{<i>x</i>} Co _{4–<i>x</i>} Sb ₁₂ Skutterudites. ACS Applied Materials & Interfaces, 2018, 10, 625-634.	4.0	28
112	How to Measure Thermoelectric Properties Reliably. Joule, 2018, 2, 2183-2188.	11.7	65
113	Phonon diffraction and dimensionality crossover in phonon-interface scattering. Communications Physics, 2018, 1, .	2.0	28
114	Pressure-induced enhancement of thermoelectric performance in palladium sulfide. Materials Today Physics, 2018, 5, 64-71.	2.9	28
115	Pressure-induced structural phase transition and electrical properties of Cu2S. Journal of Alloys and Compounds, 2018, 766, 813-817.	2.8	3
116	Discovery of High-Performance Thermoelectric Chalcogenides through Reliable High-Throughput Material Screening. Journal of the American Chemical Society, 2018, 140, 10785-10793.	6.6	134
117	Suppression of atom motion and metal deposition in mixed ionic electronic conductors. Nature Communications, 2018, 9, 2910.	5.8	148
118	Phonon anharmonicity in thermoelectric palladium sulfide by Raman spectroscopy. Applied Physics Letters, 2018, 113, .	1.5	27
119	Meltâ€Centrifuged (Bi,Sb) ₂ Te ₃ : Engineering Microstructure toward High Thermoelectric Efficiency. Advanced Materials, 2018, 30, e1802016.	11.1	133
120	Giant enhancement of the figure-of-merit over a broad temperature range in nano-boron incorporated Cu ₂ Se. Journal of Materials Chemistry A, 2018, 6, 18409-18416.	5.2	49
121	Understanding the Intrinsic Carrier Transport in Highly Oriented Poly(3-hexylthiophene): Effect of Side Chain Regioregularity. Polymers, 2018, 10, 815.	2.0	17
122	Observation of High Seebeck Coefficient and Low Thermal Conductivity in [SrO]-Intercalated CuSbSe2 Compound. Chemistry of Materials, 2018, 30, 5539-5543.	3.2	23
123	Enhanced Thermoelectric Performance in n-Type Bi ₂ Te ₃ -Based Alloys via Suppressing Intrinsic Excitation. ACS Applied Materials & Interfaces, 2018, 10, 21372-21380.	4.0	76
124	Entropy optimized phase transitions and improved thermoelectric performance in n-type liquid-like Ag9GaSe6 materials. Materials Today Physics, 2018, 5, 20-28.	2.9	70
125	The "electron crystal―behavior in copper chalcogenides Cu ₂ X (X = Se, S). Journal of Materials Chemistry A, 2017, 5, 5098-5105.	5.2	81
126	Lattice Dislocations Enhancing Thermoelectric PbTe in Addition to Band Convergence. Advanced Materials, 2017, 29, 1606768.	11.1	365

#	Article	IF	CITATIONS
127	Strong anisotropy in thermoelectric properties of CNT/PANI composites. Carbon, 2017, 114, 1-7.	5.4	69
128	Compound Defects and Thermoelectric Properties of Self-Charge Compensated Skutterudites Se _{<i>y</i>} Co ₄ Sb _{12–<i>x</i>} Se _{<i>x</i>} . ACS Applied Materials & Interfaces, 2017, 9, 22713-22724.	4.0	27
129	Thermoelectric properties of copper-deficient Cu2-Se (0.05 ≤ ≤0.25) binary compounds. Ceramics International, 2017, 43, 11142-11148.	2.3	67
130	Crystal structure across the β to α phase transition in thermoelectric Cu _{2â^'<i>x</i>} Se. IUCrJ, 2017, 4, 476-485.	1.0	65
131	Ultrahigh Thermoelectric Performance in SrNb _{0.2} Ti _{0.8} O ₃ Oxide Films at a Submicrometer-Scale Thickness. ACS Energy Letters, 2017, 2, 915-921.	8.8	21
132	Realizing a thermoelectric conversion efficiency of 12% in bismuth telluride/skutterudite segmented modules through full-parameter optimization and energy-loss minimized integration. Energy and Environmental Science, 2017, 10, 956-963.	15.6	274
133	Multiple nanostructures in high performance Cu2S0.5Te0.5 thermoelectric materials. Ceramics International, 2017, 43, 7866-7869.	2.3	20
134	Vacancy-induced dislocations within grains for high-performance PbSe thermoelectrics. Nature Communications, 2017, 8, 13828.	5.8	360
135	A Chemical Understanding of the Band Convergence in Thermoelectric CoSb ₃ Skutterudites: Influence of Electron Population, Local Thermal Expansion, and Bonding Interactions. Chemistry of Materials, 2017, 29, 1156-1164.	3.2	50
136	Cu ₈ GeSe ₆ -based thermoelectric materials with an argyrodite structure. Journal of Materials Chemistry C, 2017, 5, 943-952.	2.7	93
137	An argyrodite-type Ag ₉ GaSe ₆ liquid-like material with ultralow thermal conductivity and high thermoelectric performance. Chemical Communications, 2017, 53, 11658-11661.	2.2	84
138	Solidâ€State Explosive Reaction for Nanoporous Bulk Thermoelectric Materials. Advanced Materials, 2017, 29, 1701148.	11.1	110
139	High thermoelectric performance and low thermal conductivity in Cu2â^'yS1/3Se1/3Te1/3 liquid-like materials with nanoscale mosaic structures. Nano Energy, 2017, 42, 43-50.	8.2	73
140	Significant enhancement of figure-of-merit in carbon-reinforced Cu2Se nanocrystalline solids. Nano Energy, 2017, 41, 164-171.	8.2	103
141	Ultrahigh thermoelectric performance in Cu 2â^'y Se 0.5 S 0.5 liquid-like materials. Materials Today Physics, 2017, 1, 14-23.	2.9	130
142	Enhanced Thermoelectric Performance through Tuning Bonding Energy in Cu ₂ Se _{1–<i>x</i>} S _{<i>x</i>} Liquid-like Materials. Chemistry of Materials, 2017, 29, 6367-6377.	3.2	179
143	Enhanced stability and thermoelectric figure-of-merit in copper selenide by lithium doping. Materials Today Physics, 2017, 1, 7-13.	2.9	93
144	Ultrahigh thermoelectric performance in Cu ₂ Se-based hybrid materials with highly dispersed molecular CNTs. Energy and Environmental Science, 2017, 10, 1928-1935.	15.6	298

#	Article	IF	CITATIONS
145	Extremely low thermal conductivity and high thermoelectric performance in liquid-like Cu ₂ Se _{1â^'x} S _x polymorphic materials. Journal of Materials Chemistry A, 2017, 5, 18148-18156.	5.2	86
146	Entropy as a Geneâ€Like Performance Indicator Promoting Thermoelectric Materials. Advanced Materials, 2017, 29, 1702712.	11.1	218
147	Suppressed intrinsic excitation and enhanced thermoelectric performance in Ag _x Bi _{0.5} Sb _{1.5â^x} Te ₃ . Journal of Materials Chemistry C, 2017, 5, 12619-12628.	2.7	49
148	Skutterudite with graphene-modified grain-boundary complexion enhances zT enabling high-efficiency thermoelectric device. Energy and Environmental Science, 2017, 10, 183-191.	15.6	252
149	Study on the High Temperature Interfacial Stability of Ti/Mo/Yb0.3Co4Sb12 Thermoelectric Joints. Applied Sciences (Switzerland), 2017, 7, 952.	1.3	14
150	Roles of Cu in the Enhanced Thermoelectric Properties in Bi0.5Sb1.5Te3. Materials, 2017, 10, 251.	1.3	51
151	Thermoelectric Devices for Power Generation: Recent Progress and Future Challenges. Advanced Engineering Materials, 2016, 18, 194-213.	1.6	307
152	On the tuning of electrical and thermal transport in thermoelectrics: an integrated theory–experiment perspective. Npj Computational Materials, 2016, 2, .	3.5	399
153	Designing high-performance layered thermoelectric materials through orbital engineering. Nature Communications, 2016, 7, 10892.	5.8	203
154	Electrical and thermal transports of binary copper sulfides Cu <i>x</i> S with <i>x</i> from 1.8 to 1.96. APL Materials, 2016, 4, .	2.2	59
155	Structure family and polymorphous phase transition in the compounds with soft sublattice: Cu2Se as an example. Journal of Chemical Physics, 2016, 144, 194502.	1.2	35
156	Electrical transportation performances of Nb–SrTiO3 regulated by the anion related chemical atmospheres. Materials and Design, 2016, 97, 7-12.	3.3	4
157	Enhanced thermoelectric performance in rare-earth filled-skutterudites. Journal of Materials Chemistry C, 2016, 4, 4374-4379.	2.7	31
158	Thermoelectric performance of Cu _{1â^'xâ^'î´} Ag _x InTe ₂ diamond-like materials with a pseudocubic crystal structure. Inorganic Chemistry Frontiers, 2016, 3, 1167-1177.	3.0	44
159	High efficiency Bi ₂ Te ₃ -based materials and devices for thermoelectric power generation between 100 and 300 °C. Energy and Environmental Science, 2016, 9, 3120-3127.	15.6	358
160	Quaternary Pseudocubic Cu ₂ TMSnSe ₄ (TM = Mn, Fe, Co) Chalcopyrite Thermoelectric Materials. Advanced Electronic Materials, 2016, 2, 1600312.	2.6	39
161	Thermoelectric materials step up. Nature Materials, 2016, 15, 691-692.	13.3	236
162	Non-epitaxial pulsed laser deposition of Ag2Se thermoelectric thin films for near-room temperature applications. Ceramics International, 2016, 42, 12490-12495.	2.3	34

#	Article	IF	CITATIONS
163	Recent advances in high-performance bulk thermoelectric materials. International Materials Reviews, 2016, 61, 379-415.	9.4	394
164	Reduction of thermal conductivity by low energy multi-Einstein optic modes. Journal of Materiomics, 2016, 2, 187-195.	2.8	53
165	Optimized thermoelectric properties in pseudocubic diamond-like CuGaTe ₂ compounds. Journal of Materials Chemistry A, 2016, 4, 1277-1289.	5.2	57
166	Cu-based thermoelectric materials. Energy Storage Materials, 2016, 3, 85-97.	9.5	247
167	Dislocation strain as the mechanism of phonon scattering at grain boundaries. Materials Horizons, 2016, 3, 234-240.	6.4	108
168	Photo-induced enhancement of the power factor of Cu2S thermoelectric films. Scientific Reports, 2015, 5, 16291.	1.6	26
169	Self-limited kinetics of electron doping in correlated oxides. Applied Physics Letters, 2015, 107, .	1.5	24
170	Electrical and thermal transport properties of Y b <i>x</i> Co4Sb12 filled skutterudites with ultrahigh carrier concentrations. AIP Advances, 2015, 5, .	0.6	31
171	Ultrahigh Thermoelectric Performance in Mosaic Crystals. Advanced Materials, 2015, 27, 3639-3644.	11.1	195
172	Investigation of the Anisotropic Thermoelectric Properties of Oriented Polycrystalline SnSe. Energies, 2015, 8, 6275-6285.	1.6	99
173	Fabrication and reliability evaluation of Yb0.3Co4Sb12/Mo–Ti/Mo–Cu/Ni thermoelectric joints. Ceramics International, 2015, 41, 7590-7595.	2.3	31
174	Compound defects and thermoelectric properties in ternary CuAgSe-based materials. Journal of Materials Chemistry A, 2015, 3, 13662-13670.	5.2	58
175	Defect-enhanced void filling and novel filled phases of open-structure skutterudites. Chemical Communications, 2015, 51, 10823-10826.	2.2	11
176	Multiformity and fluctuation of Cu ordering in Cu ₂ Se thermoelectric materials. Journal of Materials Chemistry A, 2015, 3, 6901-6908.	5.2	80
177	Solubility design leading to high figure of merit in low-cost Ce-CoSb3 skutterudites. Nature Communications, 2015, 6, 7584.	5.8	142
178	Influence of high energy Î ² -radiation on thermoelectric performance of filled skutterudites compounds. Journal of Alloys and Compounds, 2015, 640, 388-392.	2.8	2
179	(001)-oriented Cu2-ySe thin films with tunable thermoelectric performances grown by pulsed laser deposition. Ceramics International, 2015, 41, 7439-7445.	2.3	20
180	Composition control of pulsed laser deposited copper (I) chalcogenide thin films via plasma/Ar interactions. Science China Materials, 2015, 58, 263-268.	3.5	10

#	Article	IF	CITATIONS
181	Thermoelectric properties of Te-doped ternary CuAgSe compounds. Journal of Materials Chemistry A, 2015, 3, 22454-22461.	5.2	35
182	High thermoelectric performance in copper telluride. NPG Asia Materials, 2015, 7, e210-e210.	3.8	170
183	Interface characterization of Cu – Mo coating deposited on Ti – Al alloys by arc spraying. Functional Materials Letters, 2015, 08, 1550048.	0.7	6
184	Complex doping of group 13 elements In and Ga in caged skutterudite CoSb3. Acta Materialia, 2015, 85, 112-121.	3.8	29
185	Scanning thermoelectric microscopy of local thermoelectric behaviors in (Bi,Sb)2Te3 films. Physica B: Condensed Matter, 2015, 457, 156-159.	1.3	7
186	Measuring thermoelectric transport properties of materials. Energy and Environmental Science, 2015, 8, 423-435.	15.6	275
187	Enhanced power factor of higher manganese silicide via melt spin synthesis method. Journal of Applied Physics, 2014, 116, .	1.1	20
188	Electric-field-controlled interface strain coupling and non-volatile resistance switching of La1-xBaxMnO3 thin films epitaxially grown on relaxor-based ferroelectric single crystals. Journal of Applied Physics, 2014, 116, 113911.	1.1	3
189	Thermoelectric transport properties of diamond-like Cu1â^'xFe1+xS2 tetrahedral compounds. Journal of Applied Physics, 2014, 116, .	1.1	104
190	An Alternating-Current Voltage Modulated Thermal Probe Technique for Local Seebeck Coefficient Characterization. Chinese Physics Letters, 2014, 31, 127201.	1.3	2
191	Electronic structure of antifluorite Cu2X (X = S, Se, Te) within the modified Becke-Johnson potential plus an on-site Coulomb <i>U</i> . Journal of Chemical Physics, 2014, 140, 074702.	1.2	58
192	Phase diagram of In–Co–Sb system and thermoelectric properties of In-containing skutterudites. Energy and Environmental Science, 2014, 7, 812-819.	15.6	116
193	Oxidation Behavior of Filled Skutterudite CeFe4Sb12 in Air. Journal of Electronic Materials, 2014, 43, 1639-1644.	1.0	13
194	High Thermoelectric Performance in Nonâ€īoxic Earthâ€Abundant Copper Sulfide. Advanced Materials, 2014, 26, 3974-3978.	11.1	631
195	Preparation and structural evolution of Mo/SiOx protective coating on CoSb3-based filled skutterudite thermoelectric material. Journal of Alloys and Compounds, 2014, 604, 94-99.	2.8	15
196	Highâ€Performance Pseudocubic Thermoelectric Materials from Nonâ€cubic Chalcopyrite Compounds. Advanced Materials, 2014, 26, 3848-3853.	11.1	269
197	Thermoelectric transport of Se-rich Ag2Se in normal phases and phase transitions. Applied Physics Letters, 2014, 104, .	1.5	142
198	Laser deposition and direct-writing of thermoelectric misfit cobaltite thin films. Applied Physics Letters, 2014, 104, 231907.	1.5	16

#	Article	IF	CITATIONS
199	Low-temperature structural and transport anomalies in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="normal">Cu<mml:mn>2</mml:mn></mml:mi </mml:msub><mml:mi mathvariant="normal">Se. Physical Review B, 2014, 89, .</mml:mi </mml:math 	1.1	54
200	Enhanced thermoelectric performance in Cd doped CuInTe2 compounds. Journal of Applied Physics, 2014, 115, .	1.1	68
201	Electrical properties and microcosmic study on compound defects in Ga-containing thermoelectric skutterudites. Journal of Materials Chemistry A, 2014, 2, 10952.	5.2	28
202	Structural evolvement and thermoelectric properties of Cu _{3â^'x} Sn _x Se ₃ compounds with diamond-like crystal structures. Dalton Transactions, 2014, 43, 16788-16794.	1.6	26
203	Sulfide bornite thermoelectric material: a natural mineral with ultralow thermal conductivity. Energy and Environmental Science, 2014, 7, 4000-4006.	15.6	193
204	High-temperature thermoelectric properties of Cu1.97Ag0.03Se1+y. Materials for Renewable and Sustainable Energy, 2014, 3, 1.	1.5	36
205	"Pesting―like oxidation phenomenon of p-type filled skutterudite Ce0.9Fe3CoSb12. Journal of Alloys and Compounds, 2014, 612, 365-371.	2.8	14
206	Interface correlated exchange bias effect in epitaxial Fe3O4 thin films grown on SrTiO3 substrates. Applied Physics Letters, 2014, 105, .	1.5	17
207	Structural modifications and non-monotonic carrier concentration in Bi2Se0.3Te2.7 by reversible electrochemical lithium reactions. Acta Materialia, 2013, 61, 1508-1517.	3.8	19
208	Effect of PEGDE addition on rheological and mechanical properties of bisphenol E cyanate ester. Journal of Applied Polymer Science, 2013, 130, 463-469.	1.3	10
209	Creation of Yb2O3 Nanoprecipitates Through an Oxidation Process in Bulk Yb-Filled Skutterudites. Journal of Electronic Materials, 2013, 42, 382-388.	1.0	15
210	Chargeâ€Compensated Compound Defects in Gaâ€containing Thermoelectric Skutterudites. Advanced Functional Materials, 2013, 23, 3194-3203.	7.8	108
211	Ultrahigh Thermoelectric Performance by Electron and Phonon Critical Scattering in Cu ₂ Se _{1â€x} I _x . Advanced Materials, 2013, 25, 6607-6612.	11.1	394
212	Structure-transformation-induced abnormal thermoelectric properties in semiconductor copper selenide. Materials Letters, 2013, 93, 121-124.	1.3	75
213	Enhancement of thermoelectric performance in slightly charge-compensated Ce <i>y</i> Co4Sb12 skutterudites. Applied Physics Letters, 2013, 103, .	1.5	25
214	Microstructures and thermoelectric properties of p-type Bi x Sb2â^'x Te3 thin films with various compositions. Electronic Materials Letters, 2013, 9, 709-713.	1.0	7
215	Thermoelectric properties of p-type YbxLayFe2.7Co1.3Sb12 double-filled skutterudites. Intermetallics, 2013, 32, 209-213.	1.8	49
216	Investigation of thermoelectric properties of Cu2GaxSn1â^'xSe3 diamond-like compounds by hot pressing and spark plasma sintering. Acta Materialia, 2013, 61, 4297-4304.	3.8	65

#	Article	IF	CITATIONS
217	Influence of Ru Substitution on the Thermoelectric Properties of Ce(Fe _{1-<i>x</i>} Ru _{<i>x</i>}) ₄ Sb ₁₂ Solid Solutions. Journal of the Physical Society of Japan, 2013, 82, 124608.	0.7	3
218	Evaluating the potential for high thermoelectric efficiency of silver selenide. Journal of Materials Chemistry C, 2013, 1, 7568.	2.7	105
219	THERMOELECTRIC PROPERTIES OF MANGANESE-DOPED p-TYPE SKUTTERUDITES CeyFe4-xMnxSb12. Functional Materials Letters, 2013, 06, 1340003.	0.7	9
220	"声忶²ä¼2""çƒç"µææ−™ç"究进展. Chinese Science Bulletin, 2013, 58, 2603-2608.	0.4	3
221	Enhanced Thermoelectric Properties of BaxEuyCo4Sb12 with Very High Filling Fraction. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2013, 28, 224-228.	0.6	8
222	Flux distribution in Fe-based superconducting materials by magneto-optical imaging. Journal of Applied Physics, 2012, 111, 07E143.	1.1	3
223	Copper ion liquid-like thermoelectrics. Nature Materials, 2012, 11, 422-425.	13.3	1,700
224	Thermoelectric Properties of Heavy Rare Earth Filled Skutterudites Dy y Fe x Co4â^'x Sb12. Journal of Electronic Materials, 2012, 41, 3402-3410.	1.0	1
225	Ternary compound CuInTe2: a promising thermoelectric material with diamond-like structure. Chemical Communications, 2012, 48, 3818.	2.2	221
226	High-Temperature Oxidation Behavior of Filled Skutterudites Yb y Co4Sb12. Journal of Electronic Materials, 2012, 41, 2225-2231.	1.0	22
227	Direct tuning of electrical properties in nano-structured Bi2Se0.3Te2.7 by reversible electrochemical lithium reactions. Chemical Communications, 2011, 47, 12173.	2.2	13
228	Multiple-Filled Skutterudites: High Thermoelectric Figure of Merit through Separately Optimizing Electrical and Thermal Transports. Journal of the American Chemical Society, 2011, 133, 7837-7846.	6.6	1,242
229	Realization of high thermoelectric performance in n-type partially filled skutterudites. Journal of Materials Research, 2011, 26, 1745-1754.	1.2	112
230	Composition optimization of p-type skutterudites CeyFexCo4â^'xSb12 and YbyFexCo4â^'xSb12. Journal of Materials Research, 2011, 26, 1813-1819.	1.2	42
231	Nanostructures and defects in nonequilibrium-synthesized filled skutterudite CeFe ₄ Sb ₁₂ . Journal of Materials Research, 2011, 26, 1842-1847.	1.2	9
232	Low thermal conductivity and enhanced thermoelectric performance of Gd-filled skutterudites. Journal of Applied Physics, 2011, 109, 023719.	1.1	37
233	Effects of Sn-doping on the electrical and thermal transport properties of p-type Cerium filled skutterudites. Journal of Alloys and Compounds, 2011, 509, 1101-1105.	2.8	31
234	p-Type skutterudites RxMyFe3CoSb12 (R, MÂ=ÂBa, Ce, Nd, and Yb): Effectiveness of double-filling for the lattice thermal conductivity reduction. Intermetallics, 2011, 19, 1747-1751.	1.8	92

#	Article	IF	CITATIONS
235	Visualization of vortex motion in FeAs-based BaFe1.9Ni0.1As2 single crystal by means of magneto-optical imaging. Journal of Applied Physics, 2011, 109, 07E142.	1.1	0
236	Thermoelectric properties of polycrystalline In4Se3 and In4Te3. Applied Physics Letters, 2010, 96, .	1.5	60
237	On the Design of Highâ€Efficiency Thermoelectric Clathrates through a Systematic Crossâ€Substitution of Framework Elements. Advanced Functional Materials, 2010, 20, 755-763.	7.8	195
238	Thermoelectric properties of ternary diamondlike semiconductors Cu2Ge1+xSe3. Journal of Applied Physics, 2010, 108, 073713.	1.1	33
239	Lattice thermal transport in BaxREyCo4Sb12 (RE=Ce, Yb, and Eu) double-filled skutterudites. Applied Physics Letters, 2010, 96, .	1.5	28
240	Effect of antisite defects on band structure and thermoelectric performance of ZrNiSn half-Heusler alloys. Applied Physics Letters, 2010, 96, .	1.5	106
241	Enhanced thermoelectric performance by the combination of alloying and doping in TiCoSb-based half-Heusler compounds. Journal of Applied Physics, 2009, 106, .	1.1	92
242	Effect of Ge Doping on Thermoelectric Properties of Sr _y Co ₄ Sb _{12-x} Ge _x . Japanese Journal of Applied Physics, 2008, 47, 7470.	0.8	5
243	Convergence of the formation energies of intrinsic point defects in wurtzite ZnO: first-principles study by projector augmented wave method. Journal of Physics Condensed Matter, 2006, 18, 1495-1508.	0.7	56
244	Joining of Mo to CoSb3 by spark plasma sintering by inserting a Ti interlayer. Materials Letters, 2004, 58, 3876-3878.	1.3	70
245	Plastic Inorganic Semiconductors for Flexible Electronics. , 0, , .		0