Pui Shan Chow

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4837431/publications.pdf Version: 2024-02-01

	81900	133252
4,280	39	59
citations	h-index	g-index
121	121	3453
docs citations	times ranked	citing authors
	citations 121	4,28039citationsh-index121121

#	Article	IF	CITATIONS
1	Polymorphism in cocrystals: a review and assessment of its significance. CrystEngComm, 2014, 16, 3451.	2.6	242
2	Paracetamol Crystallization Using Laser Backscattering and ATR-FTIR Spectroscopy:  Metastability, Agglomeration, and Control. Crystal Growth and Design, 2002, 2, 363-370.	3.0	238
3	Trimorphs of a pharmaceutical cocrystal involving two active pharmaceutical ingredients: potential relevance to combination drugs. CrystEngComm, 2009, 11, 1823-1827.	2.6	134
4	Polymorphs and Solvates of a Cocrystal Involving an Analgesic Drug, Ethenzamide, and 3,5-Dinitrobenzoic Acid. Crystal Growth and Design, 2010, 10, 2229-2238.	3.0	109
5	Simulation of Mixing Effects in Antisolvent Crystallization Using a Coupled CFD-PDF-PBE Approach. Crystal Growth and Design, 2006, 6, 1291-1303.	3.0	106
6	Novel solid forms of the anti-tuberculosis drug, Isoniazid: ternary and polymorphic cocrystals. CrystEngComm, 2013, 15, 5877.	2.6	97
7	Steam-Assisted Solid Wet-Gel Synthesis of High-Quality Nanorods of Boehmite and Alumina. Journal of Physical Chemistry C, 2007, 111, 700-707.	3.1	96
8	Characterization, physicochemical and photo-stability of a co-crystal involving an antibioticdrug, nitrofurantoin, and 4-hydroxybenzoic acid. CrystEngComm, 2011, 13, 759-762.	2.6	92
9	Acceleration of crystal growth rates: an unexpected effect of tailor-made additives. Chemical Communications, 2010, 46, 5924.	4.1	88
10	Operating Regions in Cooling Cocrystallization of Caffeine and Glutaric Acid in Acetonitrile. Crystal Growth and Design, 2010, 10, 2382-2387.	3.0	87
11	Dimorphs of a 1 : 1 cocrystal of ethenzamide and saccharin: solid-state grinding methods result in metastable polymorph. CrystEngComm, 2009, 11, 889.	2.6	73
12	Molecular Simulation Study of the Effect of Various Additives on Salbutamol Sulfate Crystal Habit. Molecular Pharmaceutics, 2011, 8, 1910-1918.	4.6	72
13	Co-Crystals and Co-Crystal Hydrates of the Antibiotic Nitrofurantoin: Structural Studies and Physicochemical Properties. Crystal Growth and Design, 2012, 12, 5925-5938.	3.0	72
14	Pharmaceutical cocrystals of ethenzamide: structural, solubility and dissolution studies. CrystEngComm, 2012, 14, 8515.	2.6	71
15	Influence of Solution Speciation of Impurities on Polymorphic Nucleation in Glycine. Crystal Growth and Design, 2008, 8, 179-185.	3.0	66
16	Effect of Water Activity on the Transformation between Hydrate and Anhydrate of Carbamazepine. Organic Process Research and Development, 2008, 12, 264-270.	2.7	64
17	Submicron Particles of SBA-15 Modified with MgO as Carriers for Controlled Drug Delivery. Chemical and Pharmaceutical Bulletin, 2007, 55, 985-991.	1.3	63
18	Stable polymorphs: difficult to make and difficult to predict. CrystEngComm, 2007, 9, 128.	2.6	62

#	Article	IF	CITATIONS
19	Conformational Polymorphism of Tolbutamide: A Structural, Spectroscopic, and Thermodynamic Characterization of Burger's Forms l–IV. Journal of Pharmaceutical Sciences, 2010, 99, 2975-2990.	3.3	62
20	Cocrystal Hydrate of an Antifungal Drug, Griseofulvin, with Promising Physicochemical Properties. Crystal Growth and Design, 2012, 12, 5858-5863.	3.0	61
21	Cocrystallization with flufenamic acid: comparison of physicochemical properties of two pharmaceutical cocrystals. CrystEngComm, 2014, 16, 5793.	2.6	60
22	Direct Precipitation of Micron-Size Salbutamol Sulfate: New Insights into the Action of Surfactants and Polymeric Additives. Crystal Growth and Design, 2010, 10, 3363-3371.	3.0	58
23	Conformational and enantiotropic polymorphism of a 1 : 1 cocrystal involving ethenzamide and ethylmalonic acid. CrystEngComm, 2010, 12, 3691.	2.6	58
24	Application of Attenuated Total Reflectanceâ^'Fourier Transform Infrared (ATRâ^'FTIR) Technique in the Monitoring and Control of Anti-solvent Crystallization. Industrial & Engineering Chemistry Research, 2006, 45, 438-444.	3.7	55
25	Quantification of polymorphic impurity in an enantiotropic polymorph system using differential scanning calorimetry, X-ray powder diffraction and Raman spectroscopy. International Journal of Pharmaceutics, 2011, 415, 110-118.	5.2	53
26	Interpretation of Focused Beam Reflectance Measurement (FBRM) Data via Simulated Crystallization. Organic Process Research and Development, 2008, 12, 646-654.	2.7	49
27	Automated In-line Technique Using FBRM to Achieve Consistent Product Quality in Cooling Crystallization. Crystal Growth and Design, 2007, 7, 1416-1422.	3.0	47
28	Synthesis of carboxyl-modified rod-like SBA-15 by rapid co-condensation. Journal of Colloid and Interface Science, 2008, 321, 365-372.	9.4	46
29	Glycine Open Dimers in Solution: New Insights into α-Glycine Nucleation and Growth. Crystal Growth and Design, 2012, 12, 4771-4778.	3.0	46
30	Direct Comparison of α- and γ-Glycine Growth Rates in Acidic and Basic Solutions: New Insights into Glycine Polymorphism. Crystal Growth and Design, 2012, 12, 2213-2220.	3.0	45
31	Effect of API-Polymer Miscibility and Interaction on the Stabilization of Amorphous Solid Dispersion: A Molecular Simulation Study. Industrial & Engineering Chemistry Research, 2017, 56, 12698-12707.	3.7	45
32	The solvates of sulfamerazine: structural, thermochemical, and desolvation studies. CrystEngComm, 2012, 14, 691-699.	2.6	44
33	Development of microemulsion based topical ivermectin formulations: Pre-formulation and formulation studies. Colloids and Surfaces B: Biointerfaces, 2020, 189, 110823.	5.0	44
34	Pharmaceutical Salts of Haloperidol with Some Carboxylic Acids and Artificial Sweeteners: Hydrate Formation, Polymorphism, and Physicochemical Properties. Crystal Growth and Design, 2014, 14, 2542-2556.	3.0	43
35	Molecular Speciation Controlling Stereoselectivity of Additives:Â Impact on the Habit Modification in α-Glycine Crystals. Crystal Growth and Design, 2007, 7, 254-261.	3.0	42
36	Synthesis of SBA-15 mesoporous silica via dry-gel conversion route. Microporous and Mesoporous Materials, 2006, 92, 300-308.	4.4	40

#	Article	IF	CITATIONS
37	Understanding Growth Morphology Changes of γ-Glycine and <scp>dl</scp> -Alanine Polar Crystals in Pure Aqueous Solutions. Crystal Growth and Design, 2010, 10, 4883-4889.	3.0	40
38	Quality by Design (QbD)-Based Crystallization Process Development for the Polymorphic Drug Tolbutamide. Crystal Growth and Design, 2011, 11, 3027-3038.	3.0	40
39	Resolving the longstanding riddle of pH-dependent outcome of glycine polymorphic nucleation. CrystEngComm, 2013, 15, 1218.	2.6	40
40	Seeding and Constant-Supersaturation Control by ATR-FTIR in Anti-Solvent Crystallization. Organic Process Research and Development, 2006, 10, 717-722.	2.7	39
41	Solvates and polymorphic phase transformations of 2-chloro-4-nitrobenzoic acid. CrystEngComm, 2011, 13, 1037-1045.	2.6	38
42	The solvates and salt of antibiotic agent, nitrofurantoin: structural, thermochemical and desolvation studies. CrystEngComm, 2013, 15, 878-889.	2.6	38
43	Anisotropic Crystal Growth Inhibition by Polymeric Additives: Impact on Modulation of Naproxen Crystal Shape and Size. Crystal Growth and Design, 2017, 17, 4844-4854.	3.0	37
44	Synthesis of submicron gibbsite platelets by organic-free hydrothermal crystallization process. Journal of Crystal Growth, 2006, 292, 136-142.	1.5	36
45	Co-crystals of caffeine and piracetam with 4-hydroxybenzoic acid: Unravelling the hidden hydrates of 1 : 1 co-crystals. CrystEngComm, 2012, 14, 2381.	2.6	36
46	Supersaturation Control in Cooling Polymorphic Co-Crystallization of Caffeine and Glutaric Acid. Crystal Growth and Design, 2011, 11, 4525-4532.	3.0	35
47	Crystal Engineering of Tegafur Cocrystals: Structural Analysis and Physicochemical Properties. Crystal Growth and Design, 2014, 14, 6557-6569.	3.0	35
48	Antisolvent Crystallization and Polymorph Screening of Glycine in Microfluidic Channels Using Hydrodynamic Focusing. Crystal Growth and Design, 2015, 15, 3299-3306.	3.0	35
49	Crystallizing Micronized Particles of a Poorly Water-Soluble Active Pharmaceutical Ingredient: Nucleation Enhancement by Polymeric Additives. Crystal Growth and Design, 2016, 16, 749-758.	3.0	32
50	Comparison between Open-Loop Temperature Control and Closed-Loop Supersaturation Control for Cooling Crystallization of Glycine. Industrial & Engineering Chemistry Research, 2007, 46, 830-838.	3.7	31
51	Effect of solution speciation of impurities on α-glycine crystal habit: A molecular modeling study. Journal of Crystal Growth, 2008, 310, 3034-3041.	1.5	31
52	Screening for Cocrystallization Tendency: The Role of Intermolecular Interactions. Journal of Physical Chemistry B, 2008, 112, 9890-9895.	2.6	31
53	Predicting Multicomponent Crystal Formation: The Interplay between Homomeric and Heteromeric Interactions. Crystal Growth and Design, 2009, 9, 4529-4532.	3.0	30
54	Polymorphism and phase transformations of a cocrystal of nicotinamide and pimelic acid. CrystEngComm, 2012, 14, 8193.	2.6	30

#	Article	IF	CITATIONS
55	Nucleation of Elusive Crystal Polymorphs at the Solution–Substrate Contact Line. Crystal Growth and Design, 2013, 13, 1180-1186.	3.0	30
56	Microemulsion composed of combination of skin beneficial oils as vehicle: Development of resveratrol-loaded microemulsion based formulations for skin care applications. Colloids and Surfaces B: Biointerfaces, 2020, 194, 111161.	5.0	30
57	Novel solid forms of oxaprozin: cocrystals and an extended release drug–drug salt of salbutamol. RSC Advances, 2016, 6, 34110-34119.	3.6	28
58	Stability of Pharmaceutical Cocrystal During Milling: A Case Study of 1:1 Caffeine–Glutaric Acid. Crystal Growth and Design, 2017, 17, 4064-4071.	3.0	28
59	Implementation of Focused Beam Reflectance Measurement (FBRM) in Antisolvent Crystallization to Achieve Consistent Product Quality. Crystal Growth and Design, 2010, 10, 3668-3674.	3.0	27
60	Growth Behaviors of Two Similar Crystals: The Great Difference. Crystal Growth and Design, 2015, 15, 1082-1088.	3.0	27
61	Antibiotic elution and mechanical property of TiO2 nanotubes functionalized PMMA-based bone cements. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 91, 91-98.	3.1	27
62	Influence of structural factors on the tribological performance of organic friction modifiers. Friction, 2021, 9, 380-400.	6.4	25
63	Conformational Polymorphs of a Muscle Relaxant, Metaxalone. Crystal Growth and Design, 2011, 11, 4101-4109.	3.0	24
64	Thermal and in Situ X-ray Diffraction Analysis of a Dimorphic Co-Crystal, 1:1 Caffeine–Glutaric Acid. Crystal Growth and Design, 2016, 16, 578-586.	3.0	24
65	Cocrystals of zonisamide: physicochemical characterization and sustained release solid forms. CrystEngComm, 2018, 20, 2923-2931.	2.6	24
66	Encapsulation of Ferulic Acid in Lipid Nanoparticles as Antioxidant for Skin: Mechanistic Understanding through Experiment and Molecular Simulation. ACS Applied Nano Materials, 2020, 3, 5351-5361.	5.0	24
67	Investigating the Intermolecular Interactions in Concentration-Dependent Solution Cocrystallization of Caffeine and <i>p</i> -Hydroxybenzoic Acid. Crystal Growth and Design, 2010, 10, 3763-3769.	3.0	22
68	Operating Strategy to Produce Consistent CSD in Combined Antisolvent-Cooling Crystallization Using FBRM. Industrial & Engineering Chemistry Research, 2012, 51, 13773-13783.	3.7	22
69	Effect of temperature on tribological performance of organic friction modifier and anti-wear additive: Insights from friction, surface (ToF-SIMS and EDX) and wear analysis. Tribology International, 2021, 157, 106896.	5.9	22
70	Spherulitic growth kinetics of protein crystals. Applied Physics Letters, 2002, 81, 1975-1977.	3.3	21
71	Atomistic Simulation To Understand Anisotropic Growth Behavior of Naproxen Crystal in the Presence of Polymeric Additives. Crystal Growth and Design, 2019, 19, 3768-3776.	3.0	21
72	In Situ Determination of Metastable Zone Width Using Dielectric Constant Measurement. Organic Process Research and Development, 2010, 14, 1469-1472.	2.7	19

#	Article	IF	CITATIONS
73	Molecular dynamics simulations to elucidate translocation and permeation of active from lipid nanoparticle to skin: complemented by experiments. Nanoscale, 2021, 13, 12916-12928.	5.6	19
74	Precise Habit Modification of Polar <scp>dl</scp> -Alanine Crystal by Control of Supersaturation. Crystal Growth and Design, 2011, 11, 3941-3946.	3.0	18
75	The Effect and Counter-Effect of Impurities on Crystallization of an Agrochemical Active Ingredient: Stereochemical Rationalization and Nanoscale Crystal Growth Visualization. Crystal Growth and Design, 2011, 11, 492-500.	3.0	18
76	Robust Crystallization Process Development for the Metastable δ-form of Pyrazinamide. Organic Process Research and Development, 2015, 19, 1987-1996.	2.7	18
77	Pore size effect on the stabilization of amorphous drug in a mesoporous material: Insights from molecular simulation. Microporous and Mesoporous Materials, 2016, 221, 117-122.	4.4	18
78	Effects of Common Inorganic Salts on Glycine Polymorphic Transformation: An Insight into Salt-Dependent Polymorphic Selectivity. Crystal Growth and Design, 2016, 16, 6499-6505.	3.0	17
79	Behavior and interaction of boundary lubricating additives on steel and DLC-coated steel surfaces. Tribology International, 2021, 164, 107199.	5.9	17
80	Effects of the rate of supersaturation generation on polymorphic crystallization of m-hydroxybenzoic acid and o-aminobenzoic acid. Journal of Crystal Growth, 2011, 314, 220-226.	1.5	16
81	Preparation of quercetin nanorod/microcrystalline cellulose formulation via fluid bed coating crystallization for dissolution enhancement. International Journal of Pharmaceutics, 2020, 576, 118983.	5.2	16
82	Boundary lubrication performance of polymeric and organic friction modifiers in the presence of an anti-wear additive. Tribology International, 2022, 165, 107256.	5.9	16
83	Salt-dependent growth kinetics in glycine polymorphic crystallization. CrystEngComm, 2016, 18, 462-470.	2.6	15
84	Viscosity Prediction of Lubricants by a General Feed-Forward Neural Network. Journal of Chemical Information and Modeling, 2020, 60, 1224-1234.	5.4	15
85	Strong Additive–Surface Interaction Leads to the Unusual Revival of Growth at Solvent-Poisoned Faces of <scp>dl</scp> -Alanine Crystal. Crystal Growth and Design, 2012, 12, 5555-5560.	3.0	14
86	Improved C-control of crystallization with reduced calibration effort via conductometry. Chemical Engineering Science, 2013, 97, 126-138.	3.8	14
87	Design Space for Polymorphic Co-crystallization: Incorporating Process Model Uncertainty and Operational Variability. Crystal Growth and Design, 2014, 14, 3949-3957.	3.0	14
88	Novel pharmaceutical cocrystals of triflusal: crystal engineering and physicochemical characterization. CrystEngComm, 2015, 17, 9323-9335.	2.6	14
89	Impurity Effects on the Growth of Molecular Crystals: Experiments and Modeling. Advanced Powder Technology, 2008, 19, 459-473.	4.1	13
90	Particle Size Control in Batch Crystallization of Pyrazinamide on Different Scales. Organic Process Research and Development, 2016, 20, 2100-2107.	2.7	12

#	Article	IF	CITATIONS
91	Online Classification of Mixed Co-Crystal and Solute Suspensions using Raman Spectroscopy. Organic Process Research and Development, 2016, 20, 1068-1074.	2.7	12
92	Understanding the Salt-Dependent Outcome of Glycine Polymorphic Nucleation. Pharmaceutics, 2021, 13, 262.	4.5	12
93	Structural, Spectroscopic and Thermal Analysis of Cocrystals of Carbamazepine and Piracetam with Hydroquinone. Journal of Chemical Crystallography, 2011, 41, 1604-1611.	1.1	11
94	Quantification of particle morphology by boundary Fourier transform and generic Fourier transform. Chemical Engineering Science, 2007, 62, 3777-3786.	3.8	10
95	Ethenzamide–gentisic acid–acetic acid (2/1/1). Acta Crystallographica Section E: Structure Reports Online, 2010, 66, o1045-o1046.	0.2	10
96	PAT-Enabled Determination of Design Space for Seeded Cooling Crystallization. Organic Process Research and Development, 2013, 17, 549-556.	2.7	10
97	Mechanistic insights into the effect of structural factors on film formation and tribological performance of organic friction modifiers. Tribology International, 2021, 164, 107243.	5.9	10
98	Theophylline–gentisic acid (1/1). Acta Crystallographica Section E: Structure Reports Online, 2009, 65, o2126-o2127.	0.2	9
99	Developing Eco-Friendly Skin Care Formulations with Microemulsions of Essential Oil. Cosmetics, 2022, 9, 30.	3.3	9
100	SPHERULITIC GROWTH IN PROTEIN SOLUTIONS. International Journal of Modern Physics B, 2002, 16, 354-358.	2.0	8
101	Multivariate data analysis as a tool to investigate the reaction kinetics of intramolecular cyclization of enalapril maleate studied by isothermal and non-isothermal FT-IR microscopy. European Journal of Pharmaceutical Sciences, 2007, 32, 349-356.	4.0	8
102	Calibration of dielectric constant measurements to improve the detection of cloud and clear points in solution crystallization. Chemical Engineering Research and Design, 2011, 89, 2613-2619.	5.6	8
103	Solvates and a monohydrate of N4-acetylsulfamerazine: Structural, thermochemical, and computational analysis. Journal of Molecular Structure, 2011, 1005, 134-140.	3.6	7
104	Comparison of dielectric constant meter with turbidity meter and focused beam reflectance measurement for metastable zone width determination. Chemical Engineering Research and Design, 2012, 90, 259-265.	5.6	7
105	Influence of Base oil Polarity on the Tribological Performance of Surface-Active Engine Oil Additives. Tribology Letters, 2021, 69, 1.	2.6	7
106	Tactile friction and rheological studies to objectify sensory properties of topical formulations. Journal of Rheology, 2022, 66, 305-326.	2.6	7
107	Probing the Mechanisms Underlying Electrolyte-Assisted Nucleation Enhancement of <scp>dl</scp> -Alanine. Crystal Growth and Design, 2014, 14, 1406-1411.	3.0	6
108	Polymer Templated Structural Evolution of a Poorly Water-Soluble Active Pharmaceutical Ingredient from Nanoparticles to Hierarchical Crystals. Crystal Growth and Design, 2018, 18, 3089-3098.	3.0	6

#	Article	IF	CITATIONS
109	Elucidating the Complex Phase Behavior of a Cocrystal System Containing Two APIs and One Coformer. Crystal Growth and Design, 2019, 19, 157-165.	3.0	5
110	Nitrofurantoin methanol monosolvate. Acta Crystallographica Section E: Structure Reports Online, 2011, 67, 0550-0551.	0.2	4
111	Continuous and Scalable Process for the Production of Hollow Crystals of a Poorly Water-Soluble Active Pharmaceutical Ingredient for Dissolution Enhancement and Inhaled Delivery. Crystal Growth and Design, 2019, 19, 3402-3409.	3.0	3
112	Agomelatine–hydroquinone (1:1) cocrystal: novel polymorphs and their thermodynamic relationship. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2019, 75, 969-977.	1.1	3
113	The Crystallization of Active Pharmaceutical Ingredients with Low Melting Points in the Presence of Liquid–Liquid Phase Separation. Crystals, 2021, 11, 1326.	2.2	3
114	Influence of wall slip, thixotropy and lubrication regime on the instrumental sensory evaluation of topical formulations. International Journal of Cosmetic Science, 2022, 44, 271-288.	2.6	3
115	2-Aminopyridinium 1-phenylcyclopropane-1-carboxylate. Acta Crystallographica Section E: Structure Reports Online, 2010, 66, o3339-o3340.	0.2	2
116	Pyrimidin-2-amine–1-phenylcyclopentane-1-carboxylic acid (1/1). Acta Crystallographica Section E: Structure Reports Online, 2011, 67, o552-o553.	0.2	2
117	Preparation of \hat{l}^2 -carotene nanoparticles by antisolvent precipitation under power ultrasound. Journal of Nanoparticle Research, 2014, 16, 1.	1.9	2
118	Relating Alkyl Chain Length of Additives to Wax Crystallization Inhibition: Toward the Rational Design of Pour Point Depressants. Crystal Growth and Design, 2022, 22, 4031-4042.	3.0	2
119	Residence Time Distribution of Liquid and Solid Phases in a Novel Staged Crystallizer. Industrial & Engineering Chemistry Research, 2009, 48, 10047-10054.	3.7	1
120	N,N-Dimethylpyridin-4-aminium 1-phenylcyclopentane-1-carboxylate monohydrate. Acta Crystallographica Section E: Structure Reports Online, 2011, 67, o1227-o1227.	0.2	0
121	Reply to the â€~Comment on "Trimorphs of a pharmaceutical cocrystal involving two active pharmaceutical ingredients: potential relevance to combination drugs―by S. Aitipamula, P. S. Chow and R. B. H. Tan, <i>CrystEngComm</i> , 2009, 11 , 1823'. CrystEngComm, 2018, 20, 373-374.	2.6	0