Xin-Jiang Lu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4837359/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Robust Least-Squares Support Vector Machine Using Probabilistic Inference. IEEE Transactions on Cybernetics, 2022, 52, 4391-4399.	9.5	2
2	Design and modeling of a series–parallel compliant device for reliable assembly during a position or angle deviation. International Journal of Advanced Manufacturing Technology, 2022, 119, 6535.	3.0	0
3	A data-driven spatiotemporal model predictive control strategy for nonlinear distributed parameter systems. Nonlinear Dynamics, 2022, 108, 1269-1281.	5.2	10
4	Development of Spatiotemporal Recurrent Neural Network for Modeling of Spatiotemporal Processes. IEEE Transactions on Industrial Informatics, 2021, 17, 189-198.	11.3	3
5	A Spatiotemporal Neural Network Modeling Method for Nonlinear Distributed Parameter Systems. IEEE Transactions on Industrial Informatics, 2021, 17, 1916-1926.	11.3	9
6	Learning region sparse constraint correlation filter for tracking. Signal Processing: Image Communication, 2021, 90, 116042.	3.2	2
7	A novel point cloud simplification method with integration of multiple-feature fusion and density uniformity. Measurement Science and Technology, 2021, 32, 125211.	2.6	7
8	A novel low-order spatiotemporal modeling method for nonlinear distributed parameter systems. Journal of Process Control, 2021, 106, 84-93.	3.3	7
9	Collaborative Learning-Based Clustered Support Vector Machine for Modeling of Nonlinear Processes Subject to Noise. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020, 50, 5162-5171.	9.3	11
10	A New Rule Reduction Method for Fuzzy Modeling. IEEE Transactions on Fuzzy Systems, 2020, 28, 3023-3031.	9.8	19
11	Physic-based and control-oriented modeling based robust control for soft dielectric elastomer actuator. Smart Materials and Structures, 2020, 29, 035026.	3.5	10
12	Profile design of gear pump for reducing flow ripple. AIP Conference Proceedings, 2020, , .	0.4	0
13	An Online Adaptive Control Strategy for Trajectory Tracking of Quadrotors Based on Fuzzy Approximation and Robust Sliding Mode Algorithm. IEEE Access, 2020, 8, 215327-215342.	4.2	13
14	Development of an annelid-like peristaltic crawling soft robot using dielectric elastomer actuators. Bioinspiration and Biomimetics, 2020, 15, 046012.	2.9	24
15	A Modeling Approach With Spatial Basis Functions Learning and Temporal Dynamic Online Modeling for Time-Varying Distributed Parameter Processes. IEEE Access, 2019, 7, 137583-137593.	4.2	2
16	A Hybrid Offline/Online Modeling Based Tracking Control for Complex Hydraulic Driving Processes. IEEE Access, 2019, 7, 106102-106110.	4.2	1
17	A Novel Spatiotemporal Fuzzy Method for Modeling of Complex Distributed Parameter Processes. IEEE Transactions on Industrial Electronics, 2019, 66, 7882-7892.	7.9	13
18	Integration of weighted LS-SVM and manifold learning for fuzzy modeling. Neurocomputing, 2018, 282, 184-191.	5.9	8

XIN-JIANG LU

#	Article	IF	CITATIONS
19	Multi-level Parameter Identification Approach. , 2018, , 75-94.		Ο
20	Probabilistic Regularized Extreme Learning Machine for Robust Modeling of Noise Data. IEEE Transactions on Cybernetics, 2018, 48, 2368-2377.	9.5	22
21	Robust Clustered Support Vector Machine With Applications to Modeling of Practical Processes. IEEE Access, 2018, 6, 75143-75154.	4.2	5
22	Nonlinear-Dynamic-Analysis Based Fuzzy PID Control Approach for Complex Hydraulic Driving Process. International Journal of Precision Engineering and Manufacturing, 2018, 19, 947-958.	2.2	9
23	Construction of Confidence Intervals for Distributed Parameter Processes Under Noise. IEEE Access, 2018, 6, 37748-37757.	4.2	1
24	Nonlinear dynamic analysis of complex hydraulic driving processes. Journal of Sound and Vibration, 2018, 430, 115-133.	3.9	4
25	Dynamic Analysis of Closed-Loop Forging System. , 2018, , 167-188.		0
26	Online Spatiotemporal Extreme Learning Machine for Complex Time-Varying Distributed Parameter Systems. IEEE Transactions on Industrial Informatics, 2017, 13, 1753-1762.	11.3	36
27	Robust Spatiotemporal LS-SVM Modeling for Nonlinear Distributed Parameter System With Disturbance. IEEE Transactions on Industrial Electronics, 2017, 64, 8003-8012.	7.9	26
28	Robust Least-Squares Support Vector Machine With Minimization of Mean and Variance of Modeling Error. IEEE Transactions on Neural Networks and Learning Systems, 2017, 29, 1-12.	11.3	19
29	Online Spatiotemporal Least-Squares Support Vector Machine Modeling Approach for Time-Varying Distributed Parameter Processes. Industrial & Engineering Chemistry Research, 2017, 56, 7314-7321.	3.7	12
30	Probabilistic Weighted Support Vector Machine for Robust Modeling With Application to Hydraulic Actuator. IEEE Transactions on Industrial Informatics, 2017, 13, 1723-1733.	11.3	18
31	A novel LS-SVM control for unknown nonlinear systems with application to complex forging process. Journal of Central South University, 2017, 24, 2524-2531.	3.0	8
32	Probabilistic Inference-Based Least Squares Support Vector Machine for Modeling Under Noisy Environment. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2016, 46, 1703-1710.	9.3	26
33	A Novel Spatiotemporal LS-SVM Method for Complex Distributed Parameter Systems With Applications to Curing Thermal Process. IEEE Transactions on Industrial Informatics, 2016, 12, 1156-1165.	11.3	63
34	Regularized online sequential extreme learning machine with adaptive regulation factor for time-varying nonlinear system. Neurocomputing, 2016, 174, 617-626.	5.9	18
35	Dempster–Shafer theory-based robust least squares support vector machine for stochastic modelling. Neurocomputing, 2016, 182, 145-153.	5.9	16
36	Two-Level Modeling Based Intelligent Integration Control for Time-Varying Forging Processes. Industrial & Engineering Chemistry Research, 2015, 54, 5690-5696.	3.7	10

XIN-JIANG LU

#	Article	IF	CITATIONS
37	Online Probabilistic Extreme Learning Machine for Distribution Modeling of Complex Batch Forging Processes. IEEE Transactions on Industrial Informatics, 2015, 11, 1277-1286.	11.3	27
38	An adaptive modeling method for time-varying distributed parameter processes with curing process applications. Nonlinear Dynamics, 2015, 82, 865-876.	5.2	26
39	A Novel LS-SVM Modeling Method for a Hydraulic Press Forging Process With Multiple Localized Solutions. IEEE Transactions on Industrial Informatics, 2015, 11, 663-670.	11.3	25
40	Novel multi-level modeling method for complex forging processes on hydraulic press machines. International Journal of Advanced Manufacturing Technology, 2015, 79, 1869-1880.	3.0	13
41	A process/shape-decomposition modeling method for deformation force estimation in complex forging processes. International Journal of Mechanical Sciences, 2015, 90, 190-199.	6.7	20
42	Stability and robust design using a sector nonlinearity approach for nonlinear manufacturing systems. Mechanism and Machine Theory, 2014, 82, 115-127.	4.5	5
43	Data-Driven Robust Design for a Curing Oven. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2014, 4, 1366-1373.	2.5	3
44	A simple online modeling approach for a time-varying forging process. International Journal of Advanced Manufacturing Technology, 2014, 75, 1197-1205.	3.0	13
45	Multi-domain modeling based robust design for nonlinear manufacture system. International Journal of Mechanical Sciences, 2013, 75, 80-86.	6.7	7
46	Operation-Region-Decomposition-Based Singular Value Decomposition/Neural Network Modeling Method for Complex Hydraulic Press Machines. Industrial & Engineering Chemistry Research, 2013, 52, 17221-17228.	3.7	20
47	Probabilistic robust design for covariance minimization of nonlinear system. Mechanism and Machine Theory, 2012, 52, 195-205.	4.5	7
48	System-Decomposition-Based Multilevel Control for Hydraulic Press Machine. IEEE Transactions on Industrial Electronics, 2012, 59, 1980-1987.	7.9	45
49	A Cohesive Zone Model in Adhesive Bonding Joint Based on MSC.marc. , 2011, , .		0
50	Hierarchy control approach for hydraulic press machine. , 2011, , .		1
51	Robust Design for Dynamic System Under Model Uncertainty. Journal of Mechanical Design, Transactions of the ASME, 2011, 133, .	2.9	11
52	Variable Sensitivity-Based Deterministic Robust Design for Nonlinear System. Journal of Mechanical Design, Transactions of the ASME, 2010, 132, .	2.9	12
53	Perturbation Theory Based Robust Design Under Model Uncertainty. Journal of Mechanical Design, Transactions of the ASME, 2009, 131, .	2.9	20
54	A subspace/KL based modelling method for nonlinear distribution parameters systems. , 2008, , .		0

#	Article	IF	CITATIONS
55	Sub-domain intelligent modeling based on neural networks. , 2008, , .		6