
Teerapong Buaboocha

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/483713/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genome-wide identification and analyses of the rice calmodulin and related potential calcium sensor proteins. BMC Plant Biology, 2007, 7, 4.	3.6	166
2	Downstream components of the calmodulin signaling pathway in the rice salt stress response revealed by transcriptome profiling and target identification. BMC Plant Biology, 2018, 18, 335.	3.6	61
3	Genome-wide association study for salinity tolerance at the flowering stage in a panel of rice accessions from Thailand. BMC Genomics, 2019, 20, 76.	2.8	59
4	The role of the OsCam1-1 salt stress sensor in ABA accumulation and salt tolerance in rice. Journal of Plant Biology, 2012, 55, 198-208.	2.1	56
5	Ca2+/Calmodulin Complex Triggers CAMTA Transcriptional Machinery Under Stress in Plants: Signaling Cascade and Molecular Regulation. Frontiers in Plant Science, 2020, 11, 598327.	3.6	51
6	Expression analysis of calmodulin and calmodulin-like genes from rice, Oryza sativa L BMC Research Notes, 2012, 5, 625.	1.4	46
7	Isocitrate lyase plays important roles in plant salt tolerance. BMC Plant Biology, 2019, 19, 472.	3.6	33
8	Calcium Signaling-mediated and Differential Induction of Calmodulin Gene Expression by Stress in Oryza sativa L BMB Reports, 2005, 38, 432-439.	2.4	33
9	Biophysical characterization of calmodulin and calmodulin-like proteins from rice, Oryza sativa L Acta Biochimica Et Biophysica Sinica, 2011, 43, 867-876.	2.0	21
10	Overexpression of a partial fragment of the salt-responsive gene OsNUC1 enhances salt adaptation in transgenic Arabidopsis thaliana and rice (Oryza sativa L.) during salt stress. Plant Science, 2013, 213, 67-78.	3.6	19
11	OsNucleolin1-L Expression in Arabidopsis Enhances Photosynthesis via Transcriptome Modification under Salt Stress Conditions. Plant and Cell Physiology, 2017, 58, 717-734.	3.1	17
12	Comparative Genomic Analysis of Rice with Contrasting Photosynthesis and Grain Production under Salt Stress. Genes, 2019, 10, 562.	2.4	16
13	C-terminal extension of calmodulin-like 3 protein from <italic>Oryza sativa</italic> L.: interaction with a high mobility group target protein. Acta Biochimica Et Biophysica Sinica, 2015, 47, 880-889.	2.0	14
14	Rice Overexpressing OsNUC1-S Reveals Differential Gene Expression Leading to Yield Loss Reduction after Salt Stress at the Booting Stage. International Journal of Molecular Sciences, 2018, 19, 3936.	4.1	14
15	Structure and expression analysis of the OsCam1-1 calmodulin gene from Oryza sativa L. BMB Reports, 2008, 41, 771-777.	2.4	13
16	Molecular Karyotyping and Exome Analysis of Saltâ€Tolerant Rice Mutant from Somaclonal Variation. Plant Genome, 2014, 7, plantgenome2014.04.0016.	2.8	12
17	Two-State Co-Expression Network Analysis to Identify Genes Related to Salt Tolerance in Thai rice. Genes, 2018, 9, 594.	2.4	9
18	Prediction of Human-Plasmodium vivax Protein Associations From Heterogeneous Network Structures Based on Machine-Learning Approach. Bioinformatics and Biology Insights, 2021, 15, 117793222110133.	2.0	9

#	Article	IF	CITATIONS
19	Identification of Key Genes in â€~Luang Pratahn', Thai Salt-Tolerant Rice, Based on Time-Course Data and Weighted Co-expression Networks. Frontiers in Plant Science, 2021, 12, 744654.	3.6	8
20	Data in support of photosynthetic responses in a chromosome segment substitution line of â€~Khao Dawk Mali 105' rice at seedling stage. Data in Brief, 2018, 21, 307-312.	1.0	7
21	Combining Genome and Gene Co-expression Network Analyses for the Identification of Genes Potentially Regulating Salt Tolerance in Rice. Frontiers in Plant Science, 2021, 12, 704549.	3.6	7
22	Comprehensive genome-wide analysis of calmodulin-binding transcription activator (CAMTA) in Durio zibethinus and identification of fruit ripening-associated DzCAMTAs. BMC Genomics, 2021, 22, 743.	2.8	7
23	Identification of a Negative Regulator for Salt Tolerance at Seedling Stage via a Genome-Wide Association Study of Thai Rice Populations. International Journal of Molecular Sciences, 2022, 23, 1842.	4.1	6
24	Comparison between the Transcriptomes of †KDML105' Rice and a Salt-Tolerant Chromosome Segment Substitution Line. Genes, 2019, 10, 742.	2.4	5
25	Salt stress responses and SNPâ€based phylogenetic analysis of Thai rice cultivars. Plant Genome, 2022, 15, e20189.	2.8	5
26	Hyperspectral and genome-wide association analyses of leaf phosphorus status in local Thai indica rice. PLoS ONE, 2022, 17, e0267304.	2.5	5
27	Proteomic analysis of transgenic rice overexpressing a calmodulin calcium sensor reveals its effects on redox signaling and homeostasis. Journal of Plant Biochemistry and Biotechnology, 2017, 26, 235-245.	1.7	3