Steffen Duhm

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4837118/publications.pdf

Version: 2024-02-01

114 papers 7,431 citations

45 h-index 84 g-index

116 all docs

116 docs citations

116 times ranked 8732 citing authors

#	Article	IF	CITATIONS
1	Orientation-dependent ionization energies and interface dipoles in ordered molecular assemblies. Nature Materials, 2008, 7, 326-332.	27.5	564
2	Charge-transfer crystallites as molecular electrical dopants. Nature Communications, 2015, 6, 8560.	12.8	317
3	On-Surface Synthesis of Rylene-Type Graphene Nanoribbons. Journal of the American Chemical Society, 2015, 137, 4022-4025.	13.7	278
4	Band-Aligned Polymeric Hole Transport Materials for Extremely Low Energy Loss \hat{l}_{\pm} -CsPbI3 Perovskite Nanocrystal Solar Cells. Joule, 2018, 2, 2450-2463.	24.0	275
5	14.1% CsPbI ₃ Perovskite Quantum Dot Solar Cells via Cesium Cation Passivation. Advanced Energy Materials, 2019, 9, 1900721.	19.5	254
6	Optimized Hole Injection with Strong Electron Acceptors at Organic-Metal Interfaces. Physical Review Letters, 2005, 95, 237601.	7.8	248
7	Improved Performance and Stability of Allâ€Inorganic Perovskite Lightâ€Emitting Diodes by Antisolvent Vapor Treatment. Advanced Functional Materials, 2017, 27, 1700338.	14.9	221
8	PTCDA on Au(111), Ag(111) and Cu(111): Correlation of interface charge transfer to bonding distance. Organic Electronics, 2008, 9, 111-118.	2.6	220
9	Impact of Bidirectional Charge Transfer and Molecular Distortions on the Electronic Structure of a Metal-Organic Interface. Physical Review Letters, 2007, 99, 256801.	7.8	206
10	Design of Organic Semiconductors from Molecular Electrostaticsâ€. Chemistry of Materials, 2011, 23, 359-377.	6.7	193
11	Highest-Occupied-Molecular-Orbital Band Dispersion of Rubrene Single Crystals as Observed by Angle-Resolved Ultraviolet Photoelectron Spectroscopy. Physical Review Letters, 2010, 104, 156401.	7.8	189
12	Charged and metallic molecular monolayers through surface-induced aromatic stabilization. Nature Chemistry, 2013, 5, 187-194.	13.6	187
13	Intermolecular Hybridization Governs Molecular Electrical Doping. Physical Review Letters, 2012, 108, 035502.	7.8	178
14	Adsorption-Induced Intramolecular Dipole: Correlating Molecular Conformation and Interface Electronic Structure. Journal of the American Chemical Society, 2008, 130, 7300-7304.	13.7	152
15	Tuning the Ionization Energy of Organic Semiconductor Films: The Role of Intramolecular Polar Bonds. Journal of the American Chemical Society, 2008, 130, 12870-12871.	13.7	152
16	Strong Depletion in Hybrid Perovskite p–n Junctions Induced by Local Electronic Doping. Advanced Materials, 2018, 30, e1705792.	21.0	141
17	The Effect of Fluorination on Pentacene/Gold Interface Energetics and Charge Reorganization Energy. Advanced Materials, 2007, 19, 112-116.	21.0	139
18	Impact of White Light Illumination on the Electronic and Chemical Structures of Mixed Halide and Single Crystal Perovskites. Advanced Optical Materials, 2017, 5, 1700139.	7. 3	136

#	Article	IF	CITATIONS
19	Highâ€Performance Perovskite Lightâ€Emitting Diode with Enhanced Operational Stability Using Lithium Halide Passivation. Angewandte Chemie - International Edition, 2020, 59, 4099-4105.	13.8	130
20	Guanidiniumâ€Assisted Surface Matrix Engineering for Highly Efficient Perovskite Quantum Dot Photovoltaics. Advanced Materials, 2020, 32, e2001906.	21.0	125
21	Energy Level Offsets at Lead Halide Perovskite/Organic Hybrid Interfaces and Their Impacts on Charge Separation. Advanced Materials Interfaces, 2015, 2, 1400528.	3.7	122
22	Surface-Controlled Mono/Diselective <i>ortho</i> C–H Bond Activation. Journal of the American Chemical Society, 2016, 138, 2809-2814.	13.7	120
23	Electricâ€Fieldâ€Assisted Charge Generation and Separation Process in Transition Metal Oxideâ€Based Interconnectors for Tandem Organic Lightâ€Emitting Diodes. Advanced Functional Materials, 2012, 22, 600-608.	14.9	115
24	Epitaxial Growth of π-Stacked Perfluoropentacene on Graphene-Coated Quartz. ACS Nano, 2012, 6, 10874-10883.	14.6	108
25	Structural and electronic properties of pentacene-fullerene heterojunctions. Journal of Applied Physics, 2008, 104, .	2.5	97
26	Nanostructured Si/Organic Heterojunction Solar Cells with High Open ircuit Voltage via Improving Junction Quality. Advanced Functional Materials, 2016, 26, 5035-5041.	14.9	86
27	Structural Order in Perfluoropentacene Thin Films and Heterostructures with Pentacene. Langmuir, 2008, 24, 7294-7298.	3.5	85
28	Interfacial Synthesis of Monodisperse CsPbBr ₃ Nanorods with Tunable Aspect Ratio and Clean Surface for Efficient Light-Emitting Diode Applications. Chemistry of Materials, 2019, 31, 1575-1583.	6.7	78
29	Constructing the Electronic Structure of CH ₃ NH ₃ PbI ₃ and CH ₃ PbBr ₃ Perovskite Thin Films from Single-Crystal Band Structure Measurements. Journal of Physical Chemistry Letters, 2019, 10, 601-609.	4.6	78
30	Tracking the formation of methylammonium lead triiodide perovskite. Applied Physics Letters, 2015, 107,	3.3	73
31	Advanced Data Encryption using 2D Materials. Advanced Materials, 2021, 33, e2100185.	21.0	67
32	Influence of intramolecular polar bonds on interface energetics in perfluoro-pentacene on Ag(111). Physical Review B, 2010, 81, .	3.2	65
33	Charge Reorganization Energy and Small Polaron Binding Energy of Rubrene Thin Films by Ultraviolet Photoelectron Spectroscopy. Advanced Materials, 2012, 24, 901-905.	21.0	65
34	Intrinsic Surface Dipoles Control the Energy Levels of Conjugated Polymers. Advanced Functional Materials, 2009, 19, 3874-3879.	14.9	64
35	Crystallisation kinetics in thin films of dihexyl-terthiophene: the appearance of polymorphic phases. RSC Advances, 2012, 2, 4404.	3.6	64
36	A diuranium carbide cluster stabilized inside a C80 fullerene cage. Nature Communications, 2018, 9, 2753.	12.8	63

#	Article	IF	Citations
37	Controlling energy level offsets in organic/organic heterostructures using intramolecular polar bonds. Applied Physics Letters, 2009, 94, .	3.3	57
38	Investigation of MoO <i>_×</i> /nâ€6i strong inversion layer interfaces via dopantâ€free heterocontact. Physica Status Solidi - Rapid Research Letters, 2017, 11, 1700107.	2.4	56
39	Accessing Surface Brillouin Zone and Band Structure of Picene Single Crystals. Physical Review Letters, 2012, 108, 226401.	7.8	55
40	Tuning the hole injection barrier height at organic/metal interfaces with (sub-) monolayers of electron acceptor molecules. Applied Physics Letters, 2005, 87, 101905.	3.3	52
41	Surface charge transfer doping induced inversion layer for high-performance graphene/silicon heterojunction solar cells. Journal of Materials Chemistry A, 2017, 5, 285-291.	10.3	52
42	Exploring the bonding of large hydrocarbons on noble metals: Diindoperylene on $Cu(111)$, $Ag(111)$, and $Au(111)$. Physical Review B, 2013, 87, .	3.2	49
43	Molecular chains and carpets of sexithiophenes onAu(111). Physical Review B, 2007, 76, .	3.2	48
44	Site-Specific Geometric and Electronic Relaxations at Organic-Metal Interfaces. Physical Review Letters, 2010, 105, 046103.	7.8	48
45	Orientational Ordering of Nonplanar Phthalocyanines on Cu(111): Strength and Orientation of the Electric Dipole Moment. Physical Review Letters, 2011, 106, 156102.	7.8	48
46	Perovskite-Inspired Lead-Free Ag2Bil5 for Self-Powered NIR-Blind Visible Light Photodetection. Nano-Micro Letters, 2020, 12, 27.	27.0	46
47	Interdiffusion of molecular acceptors through organic layers to metal substrates mimics doping-related energy level shifts. Applied Physics Letters, 2009, 95, 093305.	3.3	45
48	Pentacene on Au(1 1 1), Ag(1 1 1) and Cu(1 1 1): From physisorption to chemisorpti Condensed Matter, 2016, 28, 094005.	on lourna	l of Physics
49	Structure Solution of the 6,13-Pentacenequinone Surface-Induced Polymorph by Combining X-ray Diffraction Reciprocal-Space Mapping and Theoretical Structure Modeling. Crystal Growth and Design, 2011, 11, 600-606.	3.0	44
50	The effect of water on colloidal quantum dot solar cells. Nature Communications, 2021, 12, 4381.	12.8	44
51	Alternative Type Two-Dimensional–Three-Dimensional Lead Halide Perovskite with Inorganic Sodium lons as a Spacer for High-Performance Light-Emitting Diodes. ACS Nano, 2019, 13, 1645-1654.	14.6	43
52	Surface modification of ZnO electron transport layers with glycine for efficient inverted non-fullerene polymer solar cells. Organic Electronics, 2019, 70, 25-31.	2.6	41
53	Orientation-Dependent Work-Function Modification Using Substituted Pyrene-Based Acceptors. Journal of Physical Chemistry C, 2017, 121, 24657-24668.	3.1	39
54	Impact of Oxygen Vacancy on Energy-Level Alignment at MoO _{<i>x</i>} /Organic Interfaces. Applied Physics Express, 2013, 6, 095701.	2.4	36

#	Article	lF	Citations
55	Weak Charge Transfer between an Acceptor Molecule and Metal Surfaces Enabling Organic/Metal Energy Level Tuning. Journal of Physical Chemistry B, 2006, 110, 21069-21072.	2.6	35
56	Cu-Doped nickel oxide prepared using a low-temperature combustion method as a hole-injection layer for high-performance OLEDs. Journal of Materials Chemistry C, 2017, 5, 11751-11757.	5.5	34
57	Suppressing defect states in CsPbBr ₃ perovskite <i>via</i> magnesium substitution for efficient all-inorganic light-emitting diodes. Nanoscale Horizons, 2019, 4, 924-932.	8.0	34
58	Impact of low 6,13-pentacenequinone concentration on pentacene thin film growth. Applied Physics Letters, 2007, 91, 051919.	3.3	33
59	Binding and electronic level alignment of Ï€ -conjugated systems on metals. Reports on Progress in Physics, 2020, 83, 066501.	20.1	32
60	An Organic Borate Salt with Superior <i>p</i> àêĐoping Capability for Organic Semiconductors. Advanced Science, 2020, 7, 2001322.	11.2	32
61	Phase-separation and mixing in thin films of co-deposited rod-like conjugated molecules. Journal of Materials Chemistry, 2010, 20, 4055.	6.7	31
62	Surface Charge Transfer Doping <i>via</i> Transition Metal Oxides for Efficient p-Type Doping of II–VI Nanostructures. ACS Nano, 2016, 10, 10283-10293.	14.6	31
63	Direct Observation of Conductive Polymer Induced Inversion Layer in nâ€si and Correlation to Solar Cell Performance. Advanced Functional Materials, 2020, 30, 1903440.	14.9	29
64	Bilayer Formation vs Molecular Exchange in Organic Heterostructures: Strong Impact of Subtle Changes in Molecular Structure. Journal of Physical Chemistry C, 2018, 122, 9480-9490.	3.1	27
65	Pentacene on Ag(111): Correlation of Bonding Distance with Intermolecular Interaction and Order. ACS Applied Materials & Distance with Intermolecular Interaction and Order.	8.0	25
66	The Relationship between Structural and Electrical Characteristics in Perylenecarboxydiimideâ€Based Nanoarchitectures. Advanced Functional Materials, 2015, 25, 2501-2510.	14.9	25
67	Influence of alkyl chain substitution on sexithienyl-metal interface morphology and energetics. Applied Physics Letters, 2006, 88, 203109.	3.3	24
68	Spontaneous charge transfer at organic-organic homointerfaces to establish thermodynamic equilibrium. Applied Physics Letters, 2007, 90, 122113.	3.3	24
69	Bright inverted quantum-dot light-emitting diodes by all-solution processing. Journal of Materials Chemistry C, 2018, 6, 7487-7492.	5.5	24
70	Electrostatic Interactions Shape Molecular Organization and Electronic Structure of Organic Semiconductor Blends. Chemistry of Materials, 2020, 32, 1261-1271.	6.7	24
71	CH ₃ NH ₃ Pbl _{3â€"<i>x</i>} Cl _{<i>x</i>} under Different Fabrication Strategies: Electronic Structures and Energy-Level Alignment with an Organic Hole Transport Material. ACS Applied Materials & Transport Material. ACS Applied Materials & Transport &	8.0	23
72	Molecular Structureâ€Dependent Charge Injection and Doping Efficiencies of Organic Semiconductors: Impact of Side Chain Substitution. Advanced Materials Interfaces, 2014, 1, 1300128.	3.7	22

#	Article	IF	CITATIONS
73	Sub-nanometer Control of the Interlayer Spacing in Thin Films of Intercalated Rodlike Conjugated Molecules. Journal of Physical Chemistry B, 2007, 111, 14097-14101.	2.6	21
74	Internal Structure of Nanoporous TiO2/Polyion Thin Films Prepared by Layer-by-Layer Deposition. Langmuir, 2007, 23, 9860-9865.	3.5	20
75	Oxygen Vacancies Allow Tuning the Work Function of Vanadium Dioxide. Advanced Materials Interfaces, 2018, 5, 1801033.	3.7	20
76	Vacuum sublimed $\hat{l}\pm, \hat{l}\%$ -dihexylsexithiophene thin films: Correlating electronic structure and molecular orientation. Journal of Applied Physics, 2008, 104, 033717.	2.5	19
77	Impact of alkyl side chains at self-assembly, electronic structure and charge arrangement in sexithiophene thin films. Organic Electronics, 2011, 12, 903-910.	2.6	18
78	Doped copper phthalocyanine via an aqueous solution process for high-performance organic light-emitting diodes. Organic Electronics, 2019, 68, 236-241.	2.6	18
79	Metal-organic interface functionalization via acceptor end groups: PTCDI on coinage metals. Physical Review Materials, 2017, 1, .	2.4	18
80	Transient Monolayer Structure of Rubrene on Graphite: Impact on Hole–Phonon Coupling. Journal of Physical Chemistry C, 2016, 120, 14568-14574.	3.1	16
81	Nitrogen substitution impacts organic-metal interface energetics. Physical Review B, 2016, 94, .	3.2	15
82	Electronic non-equilibrium conditions at C60–pentacene heterostructures. Journal of Electron Spectroscopy and Related Phenomena, 2009, 174, 40-44.	1.7	13
83	Stoichiometric and Oxygen-Deficient VO ₂ as Versatile Hole Injection Electrode for Organic Semiconductors. ACS Applied Materials & Interfaces, 2018, 10, 10552-10559.	8.0	13
84	Impact of Nitrogen Substitution and Molecular Orientation on the Energy-Level Alignment of Heteroacene Films. Journal of Physical Chemistry C, 2011, 115, 15502-15508.	3.1	12
85	HATCN-based Charge Recombination Layers as Effective Interconnectors for Tandem Organic Solar Cells. ACS Applied Materials & Samp; Interfaces, 2014, 6, 15604-15609.	8.0	12
86	Solvent-resistant ITO work function tuning by an acridine derivative enables high performance inverted polymer solar cells. Organic Electronics, 2016, 35, 6-11.	2.6	12
87	Energy-level alignment at strongly coupled organic–metal interfaces. Journal of Physics Condensed Matter, 2019, 31, 194002.	1.8	12
88	Seleno groups control the energy-level alignment between conjugated organic molecules and metals. Journal of Chemical Physics, 2014, 140, 014705.	3.0	11
89	Characteristics of Organic–Metal Interaction: A Perspective from Bonding Distance to Orbital Delocalization. Journal of the Physical Society of Japan, 2018, 87, 061008.	1.6	10
90	Resolving intramolecular-distortion changes induced by the partial fluorination of pentacene adsorbed on $Cu(111)$. Physical Review Materials, 2018, 2, .	2.4	10

#	Article	IF	Citations
91	Morphology, interfacial electronic structure, and optical properties of oligothiophenes grown on ZnSe (100) by molecular beam deposition. Physical Review B, 2006, 73, .	3.2	9
92	Surface CH ₃ NH ₃ ⁺ to CH ₃ ⁺ Ratio Impacts the Work Function of Solutionâ€Processed and Vacuumâ€Sublimed CH ₃ NH ₃ Pbl ₃ Thin Films. Advanced Materials Interfaces, 2019, 6, 1801827.	3.7	9
93	Substrate-Independent Energy-Level Pinning of an Organic Semiconductor Providing Versatile Hole-Injection Electrodes. ACS Applied Electronic Materials, 2020, 2, 3994-4001.	4.3	9
94	Unraveling the Role of Substrates on Interface Energetics and Morphology of PCDTBT:PC ₇₀ BM Bulk Heterojunction. Advanced Materials Interfaces, 2015, 2, 1500095.	3.7	8
95	Picene thin films on metal surfaces: Impact of molecular shape on interfacial coupling. Physica Status Solidi - Rapid Research Letters, 2017, 11, 1700012.	2.4	8
96	Ultraviolet photoelectron spectroscopy reveals energy-band dispersion for⟨i⟩Ï€⟨/i⟩-stacked 7,8,15,16-tetraazaterrylene thin films in a donor–acceptor bulk heterojunction. Nanotechnology, 2018, 29, 194002.	2.6	8
97	Highâ€Performance Perovskite Lightâ€Emitting Diode with Enhanced Operational Stability Using Lithium Halide Passivation. Angewandte Chemie, 2020, 132, 4128-4134.	2.0	8
98	Heteromolecular Bilayers on a Weakly Interacting Substrate: Physisorptive Bonding and Molecular Distortions of Copper–Hexadecafluorophthalocyanine. ACS Applied Materials & Distortions & References, 2020, 12, 14542-14551.	8.0	8
99	Pentacene/perfluoropentacene bilayers on Au(111) and Cu(111): impact of organic–metal coupling strength on molecular structure formation. Nanoscale Advances, 2021, 3, 2598-2606.	4.6	8
100	Schottky contact formation by an insulator: Lithium fluoride on silicon. Applied Physics Letters, 2021, 118, .	3.3	7
101	Revealing a Zinc Oxide/Perovskite Luminescence Quenching Mechanism Targeting Low-Roll-off Light-Emitting Diodes. Journal of Physical Chemistry Letters, 2022, 13, 3121-3129.	4.6	7
102	The morphology of organic nanocolumn arrays: Amorphous versus crystalline solids. Journal of Materials Research, 2009, 24, 1492-1497.	2.6	6
103	Formation of intra-island grain boundaries in pentacene monolayers. Physical Chemistry Chemical Physics, 2011, 13, 21102.	2.8	6
104	Vertical Bonding Distances Impact Organic-Metal Interface Energetics. Springer Series in Materials Science, 2015, , 89-107.	0.6	6
105	X-ray standing waves reveal lack of OH termination at hydroxylated ZnO(0001) surfaces. Physical Review Materials, 2020, 4, .	2.4	6
106	Impact of Substrate Hydrophobicity on Layer Composition and Work Function of PEDOT:PSS Thin Films. Physica Status Solidi - Rapid Research Letters, 2022, 16, 2100434.	2.4	6
107	Dipolar Substitution Impacts Growth and Electronic Properties of Para â€Sexiphenyl Thin Films. Advanced Materials Interfaces, 2020, 7, 1901707.	3.7	5
108	Impact of room temperature on pentacene thin film growth and electronic structure. Canadian Journal of Chemistry, 2017, 95, 1130-1134.	1.1	4

#	Article	IF	CITATIONS
109	Carrier injection in organic electronics: Injection hotspot effect beyond barrier reduction effect. Applied Physics Letters, 2018, 113, 043302.	3.3	4
110	Impact of fluorination on interface energetics and growth of pentacene on Ag(111). Beilstein Journal of Nanotechnology, 2020, 11 , $1361-1370$.	2.8	4
111	Photoelectron spectroscopy reveals molecular diffusion through physisorbed template layers on Au(111). Electronic Structure, 2021, 3, 024002.	2.8	4
112	Modification of TiO 2 (1 1 0)/organic hole transport layer interface energy levels by a dipolar perylene derivative. Electronic Structure, 2019, 1, 015007.	2.8	3
113	Interface energetics in organic electronic devices. , 2021, , 143-164.		3
114	Enhanced carrier injection hotspot effect by direct and simple ITO surface engineering. Applied Physics Letters, 2021, 118, 223301.	3.3	2