Tejendra K Gupta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4836755/publications.pdf

Version: 2024-02-01

25 papers

2,162 citations

448610 19 h-index 685536 24 g-index

25 all docs

25 docs citations

25 times ranked

3128 citing authors

#	Article	IF	CITATIONS
1	Recent advancement in three dimensional graphene-carbon nanotubes hybrid materials for energy storage and conversion applications. Journal of Energy Storage, 2022, 50, 104235.	3.9	27
2	Investigation of the microwave absorbing properties on polymer sheets. Journal of Materials Science: Materials in Electronics, 2021, 32, 25963-25972.	1.1	3
3	Strong, stretchable and ultrasensitive MWCNT/TPU nanocomposites for piezoresistive strain sensing. Composites Part B: Engineering, 2019, 177, 107285.	5.9	97
4	Electrical, mechanical and thermal properties of graphene nanoplatelets reinforced UHMWPE nanocomposites. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2019, 241, 82-91.	1.7	68
5	Self-sensing and mechanical performance of CNT/GNP/UHMWPE biocompatible nanocomposites. Journal of Materials Science, 2018, 53, 7939-7952.	1.7	49
6	Synergetic effect of graphene oxide-carbon nanotube on nanomechanical properties of acrylonitrile butadiene styrene nanocomposites. Materials Research Express, 2018, 5, 045608.	0.8	19
7	Self-sensing performance of MWCNT-low density polyethylene nanocomposites. Materials Research Express, 2018, 5, 015703.	0.8	24
8	Strain and damage-sensing performance of biocompatible smart CNT/UHMWPE nanocomposites. Materials Science and Engineering C, 2018, 92, 957-968.	3.8	58
9	Strong linear-piezoresistive-response of carbon nanostructures reinforced hyperelastic polymer nanocomposites. Composites Part A: Applied Science and Manufacturing, 2018, 113, 141-149.	3.8	68
		_	_
10	Fabrication of Carbon Nanotube/Polymer Nanocomposites. , 2018, , 61-81.		19
10		5.3	19
	Fabrication of Carbon Nanotube/Polymer Nanocomposites. , 2018, , 61-81. Excellent storage stability and sensitive detection of neurotoxin quinolinic acid. Biosensors and	5.3	
11	Fabrication of Carbon Nanotube/Polymer Nanocomposites., 2018, , 61-81. Excellent storage stability and sensitive detection of neurotoxin quinolinic acid. Biosensors and Bioelectronics, 2017, 90, 224-229. Solvent Free, Efficient, Industrially Viable, Fast Dispersion Process Based Amine Modified MWCNT Reinforced Epoxy Composites Of Superior Mechanical Properties. Advanced Materials Letters, 2015, 6,		15
11 12	Fabrication of Carbon Nanotube/Polymer Nanocomposites., 2018, , 61-81. Excellent storage stability and sensitive detection of neurotoxin quinolinic acid. Biosensors and Bioelectronics, 2017, 90, 224-229. Solvent Free, Efficient, Industrially Viable, Fast Dispersion Process Based Amine Modified MWCNT Reinforced Epoxy Composites Of Superior Mechanical Properties. Advanced Materials Letters, 2015, 6, 104-113. Superior nano-mechanical properties of reduced graphene oxide reinforced polyurethane composites.	0.3	15 77
11 12 13	Fabrication of Carbon Nanotube/Polymer Nanocomposites., 2018, , 61-81. Excellent storage stability and sensitive detection of neurotoxin quinolinic acid. Biosensors and Bioelectronics, 2017, 90, 224-229. Solvent Free, Efficient, Industrially Viable, Fast Dispersion Process Based Amine Modified MWCNT Reinforced Epoxy Composites Of Superior Mechanical Properties. Advanced Materials Letters, 2015, 6, 104-113. Superior nano-mechanical properties of reduced graphene oxide reinforced polyurethane composites. RSC Advances, 2015, 5, 16921-16930. Microwave-Assisted Synthesis of Boron and Nitrogen co-doped Reduced Graphene Oxide for the Protection of Electromagnetic Radiation in Ku-Band. ACS Applied Materials & Company Control of States of St	0.3	15 77 56
11 12 13	Fabrication of Carbon Nanotube/Polymer Nanocomposites., 2018, , 61-81. Excellent storage stability and sensitive detection of neurotoxin quinolinic acid. Biosensors and Bioelectronics, 2017, 90, 224-229. Solvent Free, Efficient, Industrially Viable, Fast Dispersion Process Based Amine Modified MWCNT Reinforced Epoxy Composites Of Superior Mechanical Properties. Advanced Materials Letters, 2015, 6, 104-113. Superior nano-mechanical properties of reduced graphene oxide reinforced polyurethane composites. RSC Advances, 2015, 5, 16921-16930. Microwave-Assisted Synthesis of Boron and Nitrogen co-doped Reduced Graphene Oxide for the Protection of Electromagnetic Radiation in Ku-Band. ACS Applied Materials & Company Com	0.3 1.7 4.0	15 77 56 145
11 12 13 14	Fabrication of Carbon Nanotube/Polymer Nanocomposites. , 2018, , 61-81. Excellent storage stability and sensitive detection of neurotoxin quinolinic acid. Biosensors and Bioelectronics, 2017, 90, 224-229. Solvent Free, Efficient, Industrially Viable, Fast Dispersion Process Based Amine Modified MWCNT Reinforced Epoxy Composites Of Superior Mechanical Properties. Advanced Materials Letters, 2015, 6, 104-113. Superior nano-mechanical properties of reduced graphene oxide reinforced polyurethane composites. RSC Advances, 2015, 5, 16921-16930. Microwave-Assisted Synthesis of Boron and Nitrogen co-doped Reduced Graphene Oxide for the Protection of Electromagnetic Radiation in Ku-Band. ACS Applied Materials & Carbon Synthesis (2015, 7, 19831-19842.) Origin of radial breathing mode in multiwall carbon nanotubes synthesized by catalytic chemical vapor deposition. Carbon, 2014, 66, 724-726. Multi-walled carbon nanotube–graphene–polyaniline multiphase nanocomposite with superior	0.3 1.7 4.0	15 77 56 145

#	Article	IF	CITATIONS
19	Improved nanoindentation and microwave shielding properties of modified MWCNT reinforced polyurethane composites. Journal of Materials Chemistry A, 2013, 1, 9138.	5.2	282
20	Effective improvement of the properties of light weight carbon foam by decoration with multi-wall carbon nanotubes. Journal of Materials Chemistry A, 2013, 1 , 5727.	5.2	154
21	Carboxylated multiwalled carbon nanotubes based biosensor for aflatoxin detection. Sensors and Actuators B: Chemical, 2013, 185, 258-264.	4.0	138
22	Designing of multiwalled carbon nanotubes reinforced polyurethane composites as electromagnetic interference shielding materials. Journal of Polymer Research, 2013, 20, 1.	1.2	90
23	Enhancement in the thermomechanical properties of carbon fibre-carbon nanotubes-epoxy hybrid composites. International Journal of Nanotechnology, 2012, 9, 1040.	0.1	12
24	Effect of dispersion conditions on the mechanical properties of multi-walled carbon nanotubes based epoxy resin composites. Journal of Polymer Research, 2011, 18, 1397-1407.	1,2	104
25	Designing of multiwalled carbon nanotubes reinforced low density polyethylene nanocomposites for suppression of electromagnetic radiation. Journal of Nanoparticle Research, 2011, 13, 7065-7074.	0.8	105