
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4836655/publications.pdf Version: 2024-02-01

MARCOLICI

#	Article	IF	CITATIONS
1	Source of 1755 Lisbon earthquake and tsunami investigated. Eos, 2001, 82, 285-291.	0.1	111
2	Mantle thermal pulses below the Mid-Atlantic Ridge and temporal variations in the formation of oceanic lithosphere. Nature, 2003, 423, 499-505.	27.8	107
3	Transform migration and vertical tectonics at the Romanche fracture zone, equatorial Atlantic. Journal of Geophysical Research, 1994, 99, 21779-21802.	3.3	106
4	Birth of an ocean in the Red Sea: Initial pangs. Geochemistry, Geophysics, Geosystems, 2012, 13, .	2.5	78
5	Submarine salt flows in the central Red Sea. Bulletin of the Geological Society of America, 2010, 122, 701-713.	3.3	75
6	Extreme mantle uplift and exhumation along a transpressive transform fault. Nature Geoscience, 2016, 9, 619-623.	12.9	70
7	Flexural uplift of a lithospheric slab near the Vema transform (Central Atlantic): Timing and mechanisms. Earth and Planetary Science Letters, 2005, 240, 642-655.	4.4	69
8	Submersible observations of Equatorial Atlantic mantle: The St. Paul Fracture Zone region. Marine Geophysical Researches, 2000, 21, 529-560.	1.2	65
9	Serpentinization of mantle peridotites along an uplifted lithospheric section, Mid Atlantic Ridge at 11° N. Lithos, 2013, 178, 3-23.	1.4	64
10	Oceanic broad multifault transform plate boundaries. Geology, 2002, 30, 11.	4.4	56
11	Birth of an ocean in the Red Sea: Oceanic-type basaltic melt intrusions precede continental rupture. Gondwana Research, 2018, 54, 150-160.	6.0	52
12	Water-rich basalts at mid-ocean-ridge cold spots. Nature, 2005, 434, 66-69.	27.8	51
13	Initial burst of oceanic crust accretion in the Red Sea due to edge-driven mantle convection. Geology, 2011, 39, 1019-1022.	4.4	51
14	Geomorphology of the central Red Sea Rift: Determining spreading processes. Geomorphology, 2016, 274, 162-179.	2.6	49
15	Lower Cretaceous deposits trapped near the equatorial Mid-Atlantic Ridge. Nature, 1996, 380, 518-520.	27.8	45
16	The tectonic puzzle of the Messina area (Southern Italy): Insights from new seismic reflection data. Scientific Reports, 2012, 2, 970.	3.3	40
17	Bouvet Triple Junction in the South Atlantic: Geology and evolution. Journal of Geophysical Research, 1999, 104, 29365-29385.	3.3	39
18	26Âmillion years of mantle upwelling below a segment of the Mid Atlantic Ridge: The Vema Lithospheric Section revisited. Earth and Planetary Science Letters, 2009, 285, 87-95.	4.4	35

#	Article	IF	CITATIONS
19	Steady-state creation of crust-free lithosphere at cold spots in mid-ocean ridges. Geology, 2001, 29, 979.	4.4	34
20	Chapter 4 Bathy-morphological setting of the Aeolian Islands. Geological Society Memoir, 2013, 37, 27-36.	1.7	33
21	The Vema Transverse Ridge (Central Atlantic). Marine Geophysical Researches, 1998, 20, 533-556.	1.2	32
22	Death and Transfiguration of a Triple Junction in the South Atlantic. Science, 1997, 276, 243-245.	12.6	31
23	Potentialâ€field modeling of collapseâ€prone submarine volcanoes in the southern Tyrrhenian Sea (Italy). Geophysical Research Letters, 2010, 37, .	4.0	31
24	Lower Cretaceous to Eocene sedimentary transverse ridge at the Romanche Fracture Zone and the opening of the equatorial Atlantic. Marine Geology, 2001, 176, 101-119.	2.1	29
25	PLOTMAP: Geophysical and geological applications of good standard quality cartographic software. Computers and Geosciences, 1989, 15, 519-585.	4.2	28
26	Three-dimensional passive mantle flow beneath mid-ocean ridges: an analytical approach. Geophysical Journal International, 2008, 175, 783-805.	2.4	28
27	Nonvolcanic tectonic islands in ancient and modern oceans. Geochemistry, Geophysics, Geosystems, 2013, 14, 4698-4717.	2.5	28
28	Interactions between volcanism and tectonics in the western Aeolian sector, southern Tyrrhenian Sea. Geophysical Journal International, 2010, 183, 64-78.	2.4	26
29	Post-Mesozoic Rapid Increase of Seawater Mg/Ca due to Enhanced Mantle-Seawater Interaction. Scientific Reports, 2013, 3, 2752.	3.3	26
30	Transfer zones in an oblique back-arc basin setting: Insights from the Latium-Campania segmented margin (Tyrrhenian Sea). Tectonics, 2017, 36, 78-107.	2.8	25
31	Recent inversion of the Tyrrhenian Basin. Geology, 2020, 48, 123-127.	4.4	25
32	Near-Bottom Magnetic Signatures of Submarine Hydrothermal Systems at Marsili and Palinuro Volcanoes, Southern Tyrrhenian Sea, Italy. Economic Geology, 2014, 109, 2119-2128.	3.8	24
33	Exploring submarine earthquake geology in the Marmara Sea. Eos, 2002, 83, 229.	0.1	23
34	Deformation of a young salt giant: regional topography of the <scp>R</scp> ed <scp>S</scp> ea <scp>M</scp> iocene evaporites. Basin Research, 2017, 29, 352-369.	2.7	23
35	Diffuse impact of the Mid-Atlantic Ridge with the Romanche transform: an ultracold ridge-transform intersection. Journal of Geophysical Research, 1996, 101, 8043-8054.	3.3	22
36	Mapping of Seafloor Hydrothermally Altered Rocks Using Geophysical Methods: Marsili and Palinuro Seamounts, Southern Tyrrhenian Sea. Economic Geology, 2014, 109, 2103-2117.	3.8	22

#	Article	IF	CITATIONS
37	A 19 to 17 Ma amagmatic extension event at the Midâ€Atlantic Ridge: Ultramafic mylonites from the Vema Lithospheric Section. Geochemistry, Geophysics, Geosystems, 2009, 10, .	2.5	19
38	Stratigraphic numerical modelling of a carbonate platform on the Romanche transverse ridge, equatorial Atlantic. Marine Geology, 1997, 136, 245-257.	2.1	17
39	Tectonostratigraphy of Lake Trasimeno (Italy) and the geological evolution of the Northern Apennines. Tectonophysics, 2010, 492, 164-174.	2.2	17
40	Red Sea isolation history suggested by Plio-Pleistocene seismic reflection sequences. Earth and Planetary Science Letters, 2015, 430, 387-397.	4.4	17
41	The synthetic seismic expression of the Messinian salinity crisis from onshore records: Implications for shallow―to deepâ€water correlations. Basin Research, 2019, 31, 1121-1152.	2.7	17
42	Neotectonics of the Sea of Galilee (northeast Israel): implication for geodynamics and seismicity along the Dead Sea Fault system. Scientific Reports, 2020, 10, 11932.	3.3	17
43	Imaging crustal uplift, emersion, and subsidence at the Vema Fracture Zone. Eos, 1994, 75, 371.	0.1	16
44	Seafloor Spreading Initiation: Geophysical and Geochemical Constraints from the Thetis and Nereus Deeps, Central Red Sea. Springer Earth System Sciences, 2015, , 79-98.	0.2	16
45	Styles and rates of deformation in the frontal accretionary wedge of the Calabrian Arc (Ionian Sea): controls exerted by the structure of the lower African plate. Italian Journal of Geosciences, 2017, 136, 347-364.	0.8	13
46	Geology of Egypt: The Northern Red Sea. Regional Geology Reviews, 2020, , 343-374.	1.2	12
47	DIGMAP: a computer program for accurate acquisition by digitizer of geographical coordinates from conformal projections. Computers and Geosciences, 1986, 12, 175-197.	4.2	11
48	Seismic Tomography Experiment at Italy's Stromboli Volcano. Eos, 2008, 89, 269-270.	0.1	11
49	Origin of oceanic ferrodiorites by injection of nelsonitic melts in gabbros at the Vema Lithospheric Section, Mid Atlantic Ridge. Lithos, 2020, 368-369, 105589.	1.4	11
50	Comment on "Formation of Thetis Deep metal-rich sediments in the absence of brines, Red Sea―by. Journal of Geochemical Exploration, 2011, 108, 112-113.	3.2	10
51	An updated reconstruction of basaltic crust emplacement in Tyrrhenian sea, Italy. Scientific Reports, 2017, 7, 18024.	3.3	10
52	Oceanization Starts at Depth During Continental Rupturing in the Northern Red Sea. , 2019, , 131-157.		10
53	The Ventotene Volcanic Ridge: a newly explored complex in the central Tyrrhenian Sea (Italy). Bulletin of Volcanology, 2016, 78, 1.	3.0	9
54	Fault-controlled deep hydrothermal flow in a back-arc tectonic setting, SE Tyrrhenian Sea. Scientific Reports, 2019, 9, 17724.	3.3	9

#	Article	IF	CITATIONS
55	Sediment Dynamics of the Neretva Channel (Croatia Coast) Inferred by Chemical and Physical Proxies. Applied Sciences (Switzerland), 2020, 10, 807.	2.5	8
56	High H2O Content in Pyroxenes of Residual Mantle Peridotites at a Mid Atlantic Ridge Segment. Scientific Reports, 2020, 10, 579.	3.3	8
57	Volcanism in the Azores: A Marine Geophysical Perspective. Active Volcanoes of the World, 2018, , 101-126.	1.4	7
58	Mediterranean seabed in digital shaded relief. Eos, 1991, 72, 273-273.	0.1	6
59	The Bortoluzzi Mud Volcano (Ionian Sea, Italy) and its potential for tracking the seismic cycle of active faults. Solid Earth, 2019, 10, 741-763.	2.8	6
60	Variations in Plio-Pleistocene Deposition in the Red Sea. , 2019, , 323-339.		6
61	Potential mass movements on the Palinuro volcanic chain (southern Tyrrhenian Sea, Italy) and consequent tsunami generation. Journal of Volcanology and Geothermal Research, 2020, 404, 107025.	2.1	6
62	DATUM: A FORTRAN 77 computer program for datum shift and conversion of geographical coordinates between different cartographic systems. Computers and Geosciences, 1989, 15, 449-518.	4.2	5
63	Geological and Geophysical Studies of the Charlie Gibbs Fracture Zone (North Atlantic). Doklady Earth Sciences, 2021, 497, 191-194.	0.7	5
64	Crustal contamination and hybridization of an embryonic oceanic crust during the Red Sea rifting (Tihama Asir igneous complex, Saudi Arabia). Journal of Petrology, 0, , .	2.8	5
65	Morphobathymetry of Boka Kotorska Bay. Handbook of Environmental Chemistry, 2016, , 69-88.	0.4	4
66	Ultra-depleted melt refertilization of mantle peridotites in a large intra-transform domain (Doldrums) Tj ETQq0 () 0 rgBT /C 1:4	verlock 10 Tf
67	Early stage diapirism in the Red Sea deep-water evaporites: Origins and length-scales. Tectonophysics, 2022, 831, 229331.	2.2	4
68	Shallow water acoustic techniques to investigate transitional environments: A case study over Boka Kotorska Bay. Measurement: Journal of the International Measurement Confederation, 2018, 126, 382-391.	5.0	3
69	Hidden but Ubiquitous: The Pre-Rift Continental Mantle in the Red Sea Region. Frontiers in Earth Science, 2021, 9, .	1.8	3
70	Peculiarities of the Tectonomagmatic Processes in the Interaction Area between the Icelandic Plume and the Bight Transform Fault (North Atlantic). Doklady Earth Sciences, 2022, 504, 233-239.	0.7	3
71	Generation and evolution of the oceanic lithosphere in the North Atlantic. Rivista Del Nuovo Cimento, 2022, 45, 587-659.	5.7	3
72	Tsunami potential source in the eastern Sea of Marmara (NW Turkey), along the North Anatolian Fault system. Landslides, 2022, 19, 2295-2310.	5.4	3

#	Article	IF	CITATIONS
73	Investigation of the Andrew Bain transform fault zone (African-Antarctic region). Doklady Earth Sciences, 2007, 416, 991-994.	0.7	2
74	Structure of Spreading Segments of the Mid-Atlantic Ridge between the Arkhangelsky and Bogdanov Transform Faults, Equatorial Atlantic. Geotectonics, 2022, 56, 1-20.	0.9	1