Joel A Thornton

List of Publications by Citations

Source: https://exaly.com/author-pdf/4836608/joel-a-thornton-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

67 219 13,314 110 h-index g-index citations papers 16,020 8.1 6.27 239 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
219	A large source of low-volatility secondary organic aerosol. <i>Nature</i> , 2014 , 506, 476-9	50.4	1078
218	A large atomic chlorine source inferred from mid-continental reactive nitrogen chemistry. <i>Nature</i> , 2010 , 464, 271-4	50.4	471
217	Recent advances in understanding secondary organic aerosol: Implications for global climate forcing. <i>Reviews of Geophysics</i> , 2017 , 55, 509-559	23.1	359
216	An iodide-adduct high-resolution time-of-flight chemical-ionization mass spectrometer: application to atmospheric inorganic and organic compounds. <i>Environmental Science & Environmental Science & En</i>	10.3	288
215	Highly Oxygenated Organic Molecules (HOM) from Gas-Phase Autoxidation Involving Peroxy Radicals: A Key Contributor to Atmospheric Aerosol. <i>Chemical Reviews</i> , 2019 , 119, 3472-3509	68.1	262
214	Tropospheric halogen chemistry: sources, cycling, and impacts. <i>Chemical Reviews</i> , 2015 , 115, 4035-62	68.1	250
213	Toward a general parameterization of N₂O₅ reactivity on aqueous particles: the competing effects of particle liquid water, nitrate and chloride. <i>Atmospheric Chemistry and Physics</i> , 2009 , 9, 8351-8363	6.8	241
212	A novel method for online analysis of gas and particle composition: description and evaluation of a Filter Inlet for Gases and AEROsols (FIGAERO). <i>Atmospheric Measurement Techniques</i> , 2014 , 7, 983-1001	4	234
211	Contribution of nitrated phenols to wood burning brown carbon light absorption in Detling, United Kingdom during winter time. <i>Environmental Science & Environmental Science &</i>	10.3	219
210	Atmospheric NO2: in situ laser-induced fluorescence detection at parts per trillion mixing ratios. <i>Analytical Chemistry</i> , 2000 , 72, 528-39	7.8	211
209	A thermal dissociation laser-induced fluorescence instrument for in situ detection of NO2, peroxy nitrates, alkyl nitrates, and HNO3. <i>Journal of Geophysical Research</i> , 2002 , 107, ACH 4-1-ACH 4-14		209
208	Nitrate radicals and biogenic volatile organic compounds: oxidation, mechanisms, and organic aerosol. <i>Atmospheric Chemistry and Physics</i> , 2017 , 17, 2103-2162	6.8	206
207	Highly functionalized organic nitrates in the southeast United States: Contribution to secondary organic aerosol and reactive nitrogen budgets. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, 1516-21	11.5	195
206	The formation of highly oxidized multifunctional products in the ozonolysis of cyclohexene. <i>Journal of the American Chemical Society</i> , 2014 , 136, 15596-606	16.4	187
205	N2O5 hydrolysis on sub-micron organic aerosols: the effect of relative humidity, particle phase, and particle size. <i>Physical Chemistry Chemical Physics</i> , 2003 , 5, 4593	3.6	183
204	Quantifying atmospheric nitrate formation pathways based on a global model of the oxygen isotopic composition (¹⁷O) of atmospheric nitrate. <i>Atmospheric Chemistry and Physics</i> , 2009 , 9, 5043-5056	6.8	181
203	N(2)O(5) reaction on submicron sea salt aerosol: kinetics, products, and the effect of surface active organics. <i>Journal of Physical Chemistry A</i> , 2005 , 109, 10004-12	2.8	178

2	202	Ozone production rates as a function of NOx abundances and HOx production rates in the Nashville urban plume. <i>Journal of Geophysical Research</i> , 2002 , 107, ACH 7-1		178	
2	201	Insights into hydroxyl measurements and atmospheric oxidation in a California forest. <i>Atmospheric Chemistry and Physics</i> , 2012 , 12, 8009-8020	6.8	175	
2	200	The effect of varying levels of surfactant on the reactive uptake of N₂O₅ to aqueous aerosol. <i>Atmospheric Chemistry and Physics</i> , 2006 , 6, 1635-1644	6.8	172	
1	199	Reactive uptake of an isoprene-derived epoxydiol to submicron aerosol particles. <i>Environmental Science & Environmental Scienc</i>	10.3	163	
1	198	A field-deployable, chemical ionization time-of-flight mass spectrometer. <i>Atmospheric Measurement Techniques</i> , 2011 , 4, 1471-1479	4	162	
1	197	Quantifying trace gas uptake to tropospheric aerosol: recent advances and remaining challenges. <i>Chemical Society Reviews</i> , 2012 , 41, 6555-81	58.5	156	
1	196	N ₂ O ₅ by chemical ionization mass spectrometry.	4	156	
1	195	Atmospheric Measurement Techniques, 2009 , 2, 193-204 Nitryl chloride and molecular chlorine in the coastal marine boundary layer. <i>Environmental Science</i> & amp; Technology, 2012 , 46, 10463-70	10.3	152	
1	194	Kinetics of Surface-Bound Benzo[a]pyrene and Ozone on Solid Organic and Salt Aerosols. <i>Journal of Physical Chemistry A</i> , 2004 , 108, 11626-11634	2.8	148	
1	193	A large and ubiquitous source of atmospheric formic acid. <i>Atmospheric Chemistry and Physics</i> , 2015 , 15, 6283-6304	6.8	141	
1	192	Fine particle pH and the partitioning of nitric acid during winter in the northeastern United States. Journal of Geophysical Research D: Atmospheres, 2016 , 121, 10,355	4.4	129	
1	191	Monoterpenes are the largest source of summertime organic aerosol in the southeastern United States. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 2038-	2 0453	117	
1	190	Secondary organic aerosol reduced by mixture of atmospheric vapours. <i>Nature</i> , 2019 , 565, 587-593	50.4	113	
1	189	The oxidation of oleate in submicron aqueous salt aerosols: evidence of a surface process. <i>Journal of Physical Chemistry A</i> , 2007 , 111, 1073-83	2.8	111	
1	188	Molecular Composition and Volatility of Organic Aerosol in the Southeastern U.S.: Implications for IEPOX Derived SOA. <i>Environmental Science & Environmental Science & Environ</i>	10.3	110	
1	187	Direct observations of N2O5 reactivity on ambient aerosol particles. <i>Geophysical Research Letters</i> , 2009 , 36,	4.9	109	
1	186	The Chemistry of Atmosphere-Forest Exchange (CAFE) Model [Part 1: Model description and characterization. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 77-101	6.8	108	
1	185	Heterogeneous OH oxidation of palmitic acid in single component and internally mixed aerosol particles: vaporization and the role of particle phase. <i>Atmospheric Chemistry and Physics</i> , 2008 , 8, 5465-5	6 7 8	104	

On alkyl nitrates, O3, and the hissing NOyll Journal of Geophysical Research, 2003, 108, 184 100 The role of chlorine in global tropospheric chemistry. Atmospheric Chemistry and Physics, 2019, 19, 3981-4803 96 183 Observational insights into aerosol formation from isoprene. *Environmental Science & Company*; 182 10.3 95 Technology, **2013**, 47, 11403-13 Understanding the role of the ground surface in HONO vertical structure: High resolution vertical 181 91 profiles during NACHTT-11. Journal of Geophysical Research D: Atmospheres, 2013, 118, 10,155-10,171 Constraining the sensitivity of iodide adduct chemical ionization mass spectrometry to 180 multifunctional organic molecules using the collision limit and thermodynamic stability of iodide 4 90 ion adducts. Atmospheric Measurement Techniques, 2016, 9, 1505-1512 Organic nitrate aerosol formation via NO<sub>3</sub> + biogenic volatile organic compounds in the southeastern United States. Atmospheric Chemistry and Physics, 2015, 15, 13377-13392. 90 179 Effect of the Aerosol-Phase State on Secondary Organic Aerosol Formation from the Reactive 178 Uptake of Isoprene-Derived Epoxydiols (IEPOX). Environmental Science and Technology Letters, 89 11 2018, 5, 167-174 Formaldehyde production from isoprene oxidation across NO regimes. Atmospheric Chemistry and 6.8 88 Physics, 2016, 16, 2597-2610 Phase partitioning and volatility of secondary organic aerosol components formed from Epinene ozonolysis and OH oxidation: the importance of accretion products and other low volatility 6.8 88 176 compounds. Atmospheric Chemistry and Physics, 2015, 15, 7765-7776 Closing the peroxy acetyl nitrate budget: observations of acyl peroxy nitrates (PAN, PPN, and 6.8 87 175 MPAN) during BEARPEX 2007. Atmospheric Chemistry and Physics, 2009, 9, 7623-7641 Chemical feedbacks weaken the wintertime response of particulate sulfate and nitrate to emissions reductions over the eastern United States. Proceedings of the National Academy of 174 11.5 86 Sciences of the United States of America, 2018, 115, 8110-8115 Meteorology, Air Quality, and Health in London: The ClearfLo Project. Bulletin of the American 6.1 84 173 Meteorological Society, 2015, 96, 779-804 Ozone photochemistry in an oil and natural gas extraction region during winter: simulations of a 6.8 84 172 snow-free season in the Uintah Basin, Utah. Atmospheric Chemistry and Physics, 2013, 13, 8955-8971 Effects of chemical complexity on the autoxidation mechanisms of endocyclic alkene ozonolysis products: from methylcyclohexenes toward understanding pinene. Journal of Physical Chemistry 2.8 83 171 A, **2015**, 119, 4633-50 A Chemical Ionization High-Resolution Time-of-Flight Mass Spectrometer Coupled to a Micro Orifice Volatilization Impactor (MOVI-HRToF-CIMS) for Analysis of Gas and Particle-Phase Organic 82 170 3.4 Species. Aerosol Science and Technology, 2012, 46, 1313-1327 Chlorine activation within urban or power plant plumes: Vertically resolved ClNO2 and Cl2 169 measurements from a tall tower in a polluted continental setting. Journal of Geophysical Research 81 4.4 D: Atmospheres, 2013, 118, 8702-8715 Efficient Isoprene Secondary Organic Aerosol Formation from a Non-IEPOX Pathway. Environmental 168 10.3 80 Science & amp; Technology, 2016, 50, 9872-80 Eddy covariance fluxes of acyl peroxy nitrates (PAN, PPN and MPAN) above a Ponderosa pine 6.8 167 80 forest. Atmospheric Chemistry and Physics, 2009, 9, 615-634

166	Chemical Characterization of Secondary Organic Aerosol from Oxidation of Isoprene Hydroxyhydroperoxides. <i>Environmental Science & Environmental Scienc</i>	10.3	77
165	Reactivity of stabilized Criegee intermediates (sCIs) from isoprene and monoterpene ozonolysis toward SO₂ and organic acids. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 1214	1 5 .8 13 . 921	53 ⁶
164	Semicontinuous measurements of gasparticle partitioning of organic acids in a ponderosa pine forest using a MOVI-HRToF-CIMS. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 1527-1546	6.8	76
163	Assessing known pathways for HO2 loss in aqueous atmospheric aerosols: Regional and global impacts on tropospheric oxidants. <i>Journal of Geophysical Research</i> , 2008 , 113, n/a-n/a		76
162	Lightning enhancement over major oceanic shipping lanes. <i>Geophysical Research Letters</i> , 2017 , 44, 9102	-21.15/1 1	75
161	Urban pollution greatly enhances formation of natural aerosols over the Amazon rainforest. <i>Nature Communications</i> , 2019 , 10, 1046	17.4	72
160	N2O5 uptake coefficients and nocturnal NO2 removal rates determined from ambient wintertime measurements. <i>Journal of Geophysical Research D: Atmospheres</i> , 2013 , 118, 9331-9350	4.4	72
159	Total Peroxy Nitrates (PNs) in the atmosphere: the Thermal Dissociation-Laser Induced Fluorescence (TD-LIF) technique and comparisons to speciated PAN measurements. <i>Atmospheric Measurement Techniques</i> , 2010 , 3, 593-607	4	72
158	Increasing Isoprene Epoxydiol-to-Inorganic Sulfate Aerosol Ratio Results in Extensive Conversion of Inorganic Sulfate to Organosulfur Forms: Implications for Aerosol Physicochemical Properties. <i>Environmental Science & Description</i> 2019, 53, 8682-8694	10.3	71
157	Observations of total alkyl nitrates during Texas Air Quality Study 2000: Implications for O3 and alkyl nitrate photochemistry. <i>Journal of Geophysical Research</i> , 2004 , 109,		71
156	Reactive uptake of N₂O₅ to internally mixed inorganic and organic particles: the role of organic carbon oxidation state and inferred organic phase separations. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 5693-5707	6.8	70
155	Heterogeneous N2O5 Uptake During Winter: Aircraft Measurements During the 2015 WINTER Campaign and Critical Evaluation of Current Parameterizations. <i>Journal of Geophysical Research D: Atmospheres</i> , 2018 , 123, 4345-4372	4.4	69
154	Heterogeneous Reactions of Isoprene-Derived Epoxides: Reaction Probabilities and Molar Secondary Organic Aerosol Yield Estimates. <i>Environmental Science and Technology Letters</i> , 2015 , 2, 38-4	2 ¹¹	67
153	An MCM modeling study of nitryl chloride (ClNO₂) impacts on oxidation, ozone production and nitrogen oxide partitioning in polluted continental outflow. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 3789-3800	6.8	67
152	The Chemistry of Atmosphere-Forest Exchange (CAFE) Model [Part 2: Application to BEARPEX-2007 observations. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 1269-1294	6.8	67
151	Ozone depletion events observed in the high latitude surface layer during the TOPSE aircraft program. <i>Journal of Geophysical Research</i> , 2003 , 108, TOP 4-1		67
150	Computational Study of Hydrogen Shifts and Ring-Opening Mechanisms in ⊕inene Ozonolysis Products. <i>Journal of Physical Chemistry A</i> , 2015 , 119, 11366-75	2.8	66
149	Modeling the Detection of Organic and Inorganic Compounds Using Iodide-Based Chemical Ionization. <i>Journal of Physical Chemistry A</i> , 2016 , 120, 576-87	2.8	65

148	Multiphase reactivity of gaseous hydroperoxide oligomers produced from isoprene ozonolysis in the presence of acidified aerosols. <i>Atmospheric Environment</i> , 2017 , 152, 314-322	5.3	64
147	Forest-atmosphere exchange of ozone: sensitivity to very reactive biogenic VOC emissions and implications for in-canopy photochemistry. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 7875-7891	6.8	64
146	Growth Kinetics and Size Distribution Dynamics of Viscous Secondary Organic Aerosol. <i>Environmental Science & Environmental Sc</i>	10.3	63
145	Formation of Low-Volatility Organic Compounds in the Atmosphere: Recent Advancements and Insights. <i>Journal of Physical Chemistry Letters</i> , 2017 , 8, 1503-1511	6.4	61
144	On the temperature dependence of organic reactivity, nitrogen oxides, ozone production, and the impact of emission controls in San Joaquin Valley, California. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 3373-3395	6.8	61
143	Nighttime chemical evolution of aerosol and trace gases in a power plant plume: Implications for secondary organic nitrate and organosulfate aerosol formation, NO3 radical chemistry, and N2O5 heterogeneous hydrolysis. <i>Journal of Geophysical Research</i> , 2010 , 115,		58
142	Sources and Secondary Production of Organic Aerosols in the Northeastern United States during WINTER. <i>Journal of Geophysical Research D: Atmospheres</i> , 2018 , 123, 7771-7796	4.4	57
141	Nitrogen, Aerosol Composition, and Halogens on a Tall Tower (NACHTT): Overview of a wintertime air chemistry field study in the front range urban corridor of Colorado. <i>Journal of Geophysical Research D: Atmospheres</i> , 2013 , 118, 8067-8085	4.4	57
140	BAECC: A Field Campaign to Elucidate the Impact of Biogenic Aerosols on Clouds and Climate. <i>Bulletin of the American Meteorological Society</i> , 2016 , 97, 1909-1928	6.1	57
139	Direct N₂O₅ reactivity measurements at a polluted coastal site. <i>Atmospheric Chemistry and Physics</i> , 2012 , 12, 2959-2968	6.8	56
138	The Essential Role for Laboratory Studies in Atmospheric Chemistry. <i>Environmental Science & Environmental Science & Technology</i> , 2017 , 51, 2519-2528	10.3	55
137	Measurements of HO2 uptake to aqueous aerosol: Mass accommodation coefficients and net reactive loss. <i>Journal of Geophysical Research</i> , 2005 , 110,		55
136	Ambient observations of dimers from terpene oxidation in the gas phase: Implications for new particle formation and growth. <i>Geophysical Research Letters</i> , 2017 , 44, 2958-2966	4.9	54
135	The primary and recycling sources of OH during the NACHTT-2011 campaign: HONO as an important OH primary source in the wintertime. <i>Journal of Geophysical Research D: Atmospheres</i> , 2014 , 119, 6886-6896	4.4	53
134	Molecular composition and volatility of isoprene photochemical@xidation&econdary@rganic aerosol@nder@ow-@andfhigh-NO_{<i>x</i>}@onditions. <i>Atmospheric Chemistry and Physics</i> , 2017 , 17, 159-174	6.8	53
133	Influence of trans-Pacific pollution transport on acyl peroxy nitrate abundances and speciation at Mount Bachelor Observatory during INTEX-B. <i>Atmospheric Chemistry and Physics</i> , 2007 , 7, 5309-5325	6.8	53
132	An experimental technique for the direct measurement of N₂O₅ reactivity on ambient particles. <i>Atmospheric Measurement Techniques</i> , 2009 , 2, 231-242	4	50
131	Instrumentation and Measurement Strategy for the NOAA SENEX Aircraft Campaign as Part of the Southeast Atmosphere Study 2013. <i>Atmospheric Measurement Techniques</i> , 2016 , 9, 3063-3093	4	50

130	Comprehensive characterization of atmospheric organic carbon at a forested site. <i>Nature Geoscience</i> , 2017 , 10, 748-753	18.3	49	
129	Phase partitioning of soluble trace gases with size-resolved aerosols in near-surface continental air over northern Colorado, USA, during winter. <i>Journal of Geophysical Research D: Atmospheres</i> , 2013 , 118, 9414-9427	4.4	48	
128	Comparisons of in situ and long path measurements of NO2 in urban plumes. <i>Journal of Geophysical Research</i> , 2003 , 108,		47	
127	An extractive electrospray ionization time-of-flight mass spectrometer (EESI-TOF) for online measurement of atmospheric aerosol particles. <i>Atmospheric Measurement Techniques</i> , 2019 , 12, 4867-4	18 8 6	46	
126	An Odd Oxygen Framework for Wintertime Ammonium Nitrate Aerosol Pollution in Urban Areas: NOx and VOC Control as Mitigation Strategies. <i>Geophysical Research Letters</i> , 2019 , 46, 4971-4979	4.9	45	
125	Particulate Organic Matter Detection Using a Micro-Orifice Volatilization Impactor Coupled to a Chemical Ionization Mass Spectrometer (MOVI-CIMS). <i>Aerosol Science and Technology</i> , 2010 , 44, 61-74	3.4	44	
124	Observations of elevated formaldehyde over a forest canopy suggest missing sources from rapid oxidation of arboreal hydrocarbons. <i>Atmospheric Chemistry and Physics</i> , 2010 , 10, 8761-8781	6.8	44	
123	Quantitative constraints on autoxidation and dimer formation from direct probing of monoterpene-derived peroxy radical chemistry. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 12142-12147	11.5	44	
122	Measurements of the sum of HO₂NO₂ and CH₃O₂NO₂ in the remote troposphere. <i>Atmospheric Chemistry and Physics</i> , 2004 , 4, 377-384	6.8	43	
121	Anthropogenic enhancements to production of highly oxygenated molecules from autoxidation. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 6641-6646	11.5	42	
120	Constraining condensed-phase formation kinetics of secondary organic aerosol components from isoprene epoxydiols. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 1245-1254	6.8	40	
119	The sea breeze/land breeze circulation in Los Angeles and its influence on nitryl chloride production in this region. <i>Journal of Geophysical Research</i> , 2012 , 117, n/a-n/a		40	
118	Isomerization of Second-Generation Isoprene Peroxy Radicals: Epoxide Formation and Implications for Secondary Organic Aerosol Yields. <i>Environmental Science & Environmental S</i>	10.3	39	
117	Photochemical modeling of glyoxal at a rural site: observations and analysis from BEARPEX 2007. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 8883-8897	6.8	39	
116	Enhanced formation of isoprene-derived organic aerosol in sulfur-rich power plant plumes during Southeast Nexus. <i>Journal of Geophysical Research D: Atmospheres</i> , 2016 , 121, 11,137-11,153	4.4	38	
115	Molecular identification of organic vapors driving atmospheric nanoparticle growth. <i>Nature Communications</i> , 2019 , 10, 4442	17.4	37	
114	Ozone production chemistry in the presence of urban plumes. <i>Faraday Discussions</i> , 2016 , 189, 169-89	3.6	37	
113	Analysis of secondary organic aerosol formation and aging using positive matrix factorization of high-resolution aerosol mass spectra: application to the dodecane low-NO _x system. Atmospheric Chemistry and Physics. 2012, 12, 11795-11817	6.8	35	

112	Isothermal Evaporation of ⊕inene Ozonolysis SOA: Volatility, Phase State, and Oligomeric Composition. <i>ACS Earth and Space Chemistry</i> , 2018 , 2, 1058-1067	3.2	35
111	Reacto-Diffusive Length of N2O5 in Aqueous Sulfate- and Chloride-Containing Aerosol Particles. Journal of Physical Chemistry A, 2016 , 120, 1039-45	2.8	34
110	Online molecular characterization of fine particulate matter in Port Angeles, WA: Evidence for a major impact from residential wood smoke. <i>Atmospheric Environment</i> , 2016 , 138, 99-107	5.3	33
109	Temperature dependent halogen activation by N<sub> reactions on halide-doped ice surfaces. Atmospheric Chemistry and Physics, 2012 , 12, 5237-5247	6.8	33
108	NOx Lifetime and NOy Partitioning During WINTER. <i>Journal of Geophysical Research D: Atmospheres</i> , 2018 , 123, 9813-9827	4.4	32
107	Production of NO and ClNO through Nocturnal Processing of Biomass-Burning Aerosol. <i>Environmental Science & Environmental Scie</i>	10.3	32
106	Nitrogen Oxides Emissions, Chemistry, Deposition, and Export Over the Northeast United States During the WINTER Aircraft Campaign. <i>Journal of Geophysical Research D: Atmospheres</i> , 2018 , 123, 12,3	6 8 ·4	32
105	Field intercomparison of the gas/particle partitioning of oxygenated organics during the Southern Oxidant and Aerosol Study (SOAS) in 2013. <i>Aerosol Science and Technology</i> , 2017 , 51, 30-56	3.4	31
104	Quantification of organic aerosol and brown carbon evolution in fresh wildfire plumes. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 29469-29477	11.5	31
103	High upward fluxes of formic acid from a boreal forest canopy. <i>Geophysical Research Letters</i> , 2016 , 43, 9342-9351	4.9	27
102	HONO Emissions from Western U.S. Wildfires Provide Dominant Radical Source in Fresh Wildfire Smoke. <i>Environmental Science & Environmental Science & E</i>	10.3	26
101	Effects of gasWall interactions on measurements of semivolatile compounds and small polar molecules. <i>Atmospheric Measurement Techniques</i> , 2019 , 12, 3137-3149	4	26
100	Interannual variability of long-range transport as seen at the Mt. Bachelor observatory. <i>Atmospheric Chemistry and Physics</i> , 2009 , 9, 557-572	6.8	26
99	A model framework to retrieve thermodynamic and kinetic properties of organic aerosol from composition-resolved thermal desorption measurements. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 14757-14785	6.8	26
98	Flight Deployment of a High-Resolution Time-of-Flight Chemical Ionization Mass Spectrometer: Observations of Reactive Halogen and Nitrogen Oxide Species. <i>Journal of Geophysical Research D: Atmospheres</i> , 2018 , 123, 7670	4.4	25
97	Chemical transformations in monoterpene-derived organic aerosol enhanced by inorganic composition. <i>Npj Climate and Atmospheric Science</i> , 2019 , 2,	8	25
96	Decadal changes in summertime reactive oxidized nitrogen and surface ozone over the Southeast United States. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 2341-2361	6.8	24
95	Identifying precursors and aqueous organic aerosol formation pathways during the SOAS campaign. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 14409-14420	6.8	24

94	ClNO2 Yields From Aircraft Measurements During the 2015 WINTER Campaign and Critical Evaluation of the Current Parameterization. <i>Journal of Geophysical Research D: Atmospheres</i> , 2018 , 123, 12,994	4.4	24	
93	Top-Down Estimates of NOx and CO Emissions From Washington, D.CBaltimore During the WINTER Campaign. <i>Journal of Geophysical Research D: Atmospheres</i> , 2018 , 123, 7705-7724	4.4	24	
92	Overview of the HI-SCALE Field Campaign: A New Perspective on Shallow Convective Clouds. Bulletin of the American Meteorological Society, 2019 , 100, 821-840	6.1	23	
91	Semi-volatile and highly oxygenated gaseous and particulate organic compounds observed above a boreal forest canopy. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 11547-11562	6.8	23	
90	Biomass Burning Markers and Residential Burning in the WINTER Aircraft Campaign. <i>Journal of Geophysical Research D: Atmospheres</i> , 2019 , 124, 1846-1861	4.4	22	
89	Chamber-based insights into the factors controlling epoxydiol (IEPOX) secondary organic aerosol (SOA) yield, composition, and volatility. <i>Atmospheric Chemistry and Physics</i> , 2019 , 19, 11253-11265	6.8	21	
88	Airborne Observations of Reactive Inorganic Chlorine and Bromine Species in the Exhaust of Coal-Fired Power Plants. <i>Journal of Geophysical Research D: Atmospheres</i> , 2018 , 123, 11225-11237	4.4	21	
87	Anthropogenic control over wintertime oxidation of atmospheric pollutants. <i>Geophysical Research Letters</i> , 2019 , 46, 14826-14835	4.9	20	
86	Reactive nitrogen partitioning and its relationship to winter ozone events in Utah. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 573-583	6.8	19	
85	Predicting secondary organic aerosol phase state and viscosity and its effect on multiphase chemistry in a regional-scale air quality model. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 8201-8225	6.8	18	
84	Daytime Oxidized Reactive Nitrogen Partitioning in Western U.S. Wildfire Smoke Plumes. <i>Journal of Geophysical Research D: Atmospheres</i> , 2021 , 126, e2020JD033484	4.4	18	
83	Airborne and ground-based observations of ammonium-nitrate-dominated aerosols in a shallow boundary layer during intense winter pollution episodes in northern Utah. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 17259-17276	6.8	18	
82	On the contribution of nocturnal heterogeneous reactive nitrogen chemistry to particulate matter formation during wintertime pollution events in Northern Utah. <i>Atmospheric Chemistry and Physics</i> , 2019 , 19, 9287-9308	6.8	17	
81	Photolysis Controls Atmospheric Budgets of Biogenic Secondary Organic Aerosol. <i>Environmental Science & Environmental </i>	10.3	17	
80	Widespread Pollution From Secondary Sources of Organic Aerosols During Winter in the Northeastern United States. <i>Geophysical Research Letters</i> , 2019 , 46, 2974-2983	4.9	17	
79	Molecular mechanism for rapid autoxidation in ⊕inene ozonolysis. <i>Nature Communications</i> , 2021 , 12, 878	17.4	16	
78	Wintertime Gas-Particle Partitioning and Speciation of Inorganic Chlorine in the Lower Troposphere Over the Northeast United States and Coastal Ocean. <i>Journal of Geophysical Research D: Atmospheres</i> , 2018 , 123, 12,897	4.4	16	
77	Insights into hydroxyl measurements and atmospheric oxidation in a California forest		15	

76	Observations of atmosphere-biosphere exchange of total and speciated peroxynitrates: nitrogen fluxes and biogenic sources of peroxynitrates. <i>Atmospheric Chemistry and Physics</i> , 2012 , 12, 9763-9773	6.8	14
75	Emissions of Reactive Nitrogen From Western U.S. Wildfires During Summer 2018. <i>Journal of Geophysical Research D: Atmospheres</i> , 2021 , 126, e2020JD032657	4.4	14
74	Estimating the saturation vapor pressures of isoprene oxidation products C ₅ H ₁₂ O ₆ and C ₅ H ₁₀ O ₆ using COSMO-RS.	6.8	14
73	Wintertime Overnight NOx Removal in a Southeastern United States Coal-fired Power Plant Plume: A Model for Understanding Winter NOx Processing and its Implications. <i>Journal of Geophysical Research D: Atmospheres</i> , 2018 , 123, 1412-1425	4.4	13
72	Emissions of Trace Organic Gases From Western U.S. Wildfires Based on WE-CAN Aircraft Measurements. <i>Journal of Geophysical Research D: Atmospheres</i> , 2021 , 126, e2020JD033838	4.4	13
71	An electrospray chemical ionization source for real-time measurement of atmospheric organic and inorganic vapors. <i>Atmospheric Measurement Techniques</i> , 2017 , 10, 3609-3625	4	12
70	Performance of a new coaxial iontholecule reaction region for low-pressure chemical ionization mass spectrometry with reduced instrument wall interactions. <i>Atmospheric Measurement Techniques</i> , 2019 , 12, 5829-5844	4	12
69	Observational Constraints on the Formation of Cl2 From the Reactive Uptake of ClNO2 on Aerosols in the Polluted Marine Boundary Layer. <i>Journal of Geophysical Research D: Atmospheres</i> , 2019 , 124, 885	1 -88 69	10
68	Evaluating Organic Aerosol Sources and Evolution with a Combined Molecular Composition and Volatility Framework Using the Filter Inlet for Gases and Aerosols (FIGAERO). <i>Accounts of Chemical Research</i> , 2020 , 53, 1415-1426	24.3	10
67	A Near-Explicit Mechanistic Evaluation of Isoprene Photochemical Secondary Organic Aerosol Formation and Evolution: Simulations of Multiple Chamber Experiments with and without Added NOx. <i>ACS Earth and Space Chemistry</i> , 2020 , 4, 1161-1181	3.2	9
66	Thermalized Epoxide Formation in the Atmosphere. <i>Journal of Physical Chemistry A</i> , 2019 , 123, 10620-1	0 <u>6</u> .80	9
65	NO reactive uptake kinetics and chlorine activation on authentic biomass-burning aerosol. <i>Environmental Sciences: Processes and Impacts</i> , 2019 , 21, 1684-1698	4.3	9
64	Variability and Time of Day Dependence of Ozone Photochemistry in Western Wildfire Plumes. <i>Environmental Science & Environmental Science & Environmen</i>	10.3	9
63	Rates of Wintertime Atmospheric SO2 Oxidation based on Aircraft Observations during Clear-Sky Conditions over the Eastern United States. <i>Journal of Geophysical Research D: Atmospheres</i> , 2019 , 124, 6630-6649	4.4	8
62	Resolving ambient organic aerosol formation and aging pathways with simultaneous molecular composition and volatility observations. <i>ACS Earth and Space Chemistry</i> , 2020 , 4, 391-402	3.2	8
61	Daily and intraseasonal relationships between lightning and NO2 over the Maritime Continent. <i>Geophysical Research Letters</i> , 2011 , 38, n/a-n/a	4.9	8
60	Nighttime and daytime dark oxidation chemistry in wildfire plumes: an observation and model analysis of FIREX-AQ aircraft data. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 16293-16317	6.8	8
59	The influence of nitrogen oxides on the activation of bromide and chloride in salt aerosol		8

58	Toward a general parameterization of N ₂ O ₅ reactivity on aqueous particles: the competing effects of particle liquid water, nitrate and chloride		8
57	Rapid cloud removal of dimethyl sulfide oxidation products limits SO and cloud condensation nuclei production in the marine atmosphere. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	7
56	Chemical transport models often underestimate inorganic aerosol acidity in remote regions of the atmosphere. <i>Communications Earth & Environment</i> , 2021 , 2,	6.1	7
55	Global tropospheric halogen (Cl, Br, I) chemistry and its impact on oxidants. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 13973-13996	6.8	7
54	Formaldehyde production from isoprene oxidation across NO _{<i>x</i>} regimes		6
53	Phase partitioning and volatility of secondary organic aerosol components formed from pinene ozonolysis and OH oxidation: the importance of accretion products and other low volatility compounds		6
52	Instrumentation and Measurement Strategy for the NOAA SENEX Aircraft Campaign as Part of the Southeast Atmosphere Study 2013		6
51	Locally Enhanced Aerosols Over a Shipping Lane Produce Convective Invigoration but Weak Overall Indirect Effects in Cloud-Resolving Simulations. <i>Geophysical Research Letters</i> , 2018 , 45, 9305-9313	4.9	6
50	Gas to Particle Partitioning of Organic Acids in the Boreal Atmosphere. <i>ACS Earth and Space Chemistry</i> , 2019 , 3, 1279-1287	3.2	5
49	Long-term observational constraints of organic aerosol dependence on inorganic species in the southeast US. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 13091-13107	6.8	5
48	Organic nitrate aerosol formation via NO ₃ + BVOC in the Southeastern US		5
47	Heterogeneous Nitrate Production Mechanisms in Intense Haze Events in the North China Plain. Journal of Geophysical Research D: Atmospheres, 2021 , 126, e2021JD034688	4.4	5
46	Reaction Mechanisms Underlying Unfunctionalized Alkyl Nitrate Hydrolysis in Aqueous Aerosols. <i>ACS Earth and Space Chemistry</i> , 2021 , 5, 210-225	3.2	5
45	Molecular composition and volatility of multi-generation products formed from isoprene oxidation by nitrate radical. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 10799-10824	6.8	5
44	A robust clustering algorithm for analysis of composition-dependent organic aerosol thermal desorption measurements. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 2489-2512	6.8	4
43	Comparison of Airborne Reactive Nitrogen Measurements During WINTER. <i>Journal of Geophysical Research D: Atmospheres</i> , 2019 , 124, 10483-10502	4.4	4
42	A field-deployable, chemical ionization time-of-flight mass spectrometer: application to the measurement of gas-phase organic and inorganic acids 2011 ,		4
41	Chlorine activation by N ₂ O ₅ : simultaneous, in situ detection of ClNO ₂ and N ₂ 5 by chemical ionization mass spectrometry		4

40	Empirical Insights Into the Fate of Ammonia in Western U.S. Wildfire Smoke Plumes. <i>Journal of Geophysical Research D: Atmospheres</i> , 2021 , 126, e2020JD033730	4.4	4
39	A Novel Framework to Study Trace Gas Transport in Deep Convective Clouds. <i>Journal of Advances in Modeling Earth Systems</i> , 2020 , 12, e2019MS001931	7.1	3
38	The CU Airborne Solar Occultation Flux Instrument: Performance Evaluation during BB-FLUX. <i>ACS Earth and Space Chemistry</i> ,	3.2	3
37	An MCM modeling study of nitryl chloride (ClNO ₂) impacts on oxidation, ozone production and nitrogen oxide partitioning in polluted continental outflow		3
36	Interannual variability of long-range transport as seen at the Mt. Bachelor Observatory		3
35	Quantifying atmospheric nitrate formation pathways based on a global model of the oxygen isotopic composition (¹⁷ O) of atmospheric nitrate		3
34	Constraining the sensitivity of iodide adduct chemical ionization mass spectrometry to multifunctional organic molecules using the collision limit and thermodynamic stability of iodide ion adducts		3
33	Nitrate radicals and biogenic volatile organic compounds: oxidation, mechanisms and organic aerosol 2016 ,		3
32	Chamber-based insights into the factors controlling IEPOX SOA yield, composition, and volatility 2019 ,		2
31	Novel Analysis to Quantify Plume Crosswind Heterogeneity Applied to Biomass Burning Smoke. <i>Environmental Science & Environmental Science & Environmen</i>	10.3	2
30	Heterogeneous Nucleation Drives Particle Size Segregation in Sequential Ozone and Nitrate Radical Oxidation of Catechol. <i>Environmental Science & Environmental Science & Envi</i>	10.3	2
29	Forest-atmosphere exchange of ozone: sensitivity to very reactive biogenic VOC emissions and implications for in-canopy photochemistry		2
28	Photochemical modeling of glyoxal at a rural site: observations and analysis from BEARPEX 2007		2
27	Temperature dependent halogen activation by N ₂ 0 ₅ reactions on halide-doped ice surfaces		2
26	Semi-continuous measurements of gas/particle partitioning of organic acids in a ponderosa pine forest using a MOVI-HRToF-CIMS		2
25	Constraining condensed-phase formation kinetics of secondary organic aerosol components from isoprene epoxydiols		2
24	Eddy covariance fluxes of acyl peroxy nitrates (PAN, PPN, and MPAN) above a Ponderosa pine forest		2
23	The heterogeneous OH oxidation of palmitic acid in single component and internally mixed aerosol		

22	Significant Decrease in Wet Deposition of Anthropogenic Chloride Across the Eastern United States, 1998\(\textbf{D}\) 018. <i>Geophysical Research Letters</i> , 2020 , 47, e2020GL090195	4.9	2
21	Analysis of secondary organic aerosol formation and aging using positive matrix factorization of high-resolution aerosol mass spectra: application to the dodecane low-NO _x sys	tem	2
20	Molecular composition and volatility of isoprene photochemical oxidation secondary organic aerosol under low and high NO_x conditions 2016 ,		2
19	Wintertime Formaldehyde: Airborne Observations and Source Apportionment Over the Eastern United States. <i>Journal of Geophysical Research D: Atmospheres</i> , 2021 , 126, e2020JD033518	4.4	2
18	A model framework to retrieve thermodynamic and kinetic properties of organic aerosol from composition-resolved thermal desorption measurements 2018 ,		2
17	Transport and chemistry of isoprene and its oxidation products in deep convective clouds. <i>Tellus, Series B: Chemical and Physical Meteorology</i> , 2021 , 73, 1-21	3.3	2
16	Complexity in the evolution, composition, and spectroscopy of brown carbon in aircraft measurements of wildfire plumes. <i>Geophysical Research Letters</i> ,	4.9	2
15	Spatially Resolved Photochemistry Impacts Emissions Estimates in Fresh Wildfire Plumes. <i>Geophysical Research Letters</i> , 2021 , 48, e2021GL095443	4.9	1
14	Observations of elevated formaldehyde over a forest canopy suggest missing sources from rapid oxidation of arboreal hydrocarbons		1
13	On the temperature dependence of organic reactivity, nitrogen oxides, ozone production, and the impact of emission controls in San Joaquin Valley California		1
12	Reactive uptake of N ₂ O ₅ to internally mixed inorganic and organic particles: the role of organic carbon oxidation state and inferred organic phase separations		1
11	Closing the peroxy acetyl (PA) radical budget: observations of acyl peroxy nitrates (PAN, PPN, and MPAN) during BEARPEX 2007		1
10	An experimental technique for the direct measurement of N ₂ 0 ₅ reactivity on ambient particles		1
9	Total peroxy nitrates (PNs) in the atmosphere: the thermal dissociation-laser induced fluorescence (TD-LIF) technique and comparisons to speciated PAN measurements		1
8	Observations of atmosphere-biosphere exchange of total and speciated peroxynitrates: nitrogen fluxes and biogenic sources of peroxynitrates		1
7	Identifying precursors and aqueous organic aerosol formation pathways during the SOAS campaign 2016 ,		1
6	The role of chlorine in tropospheric chemistry 2018,		1
5	Observations and Modeling of NOx Photochemistry and Fate in Fresh Wildfire Plumes. <i>ACS Earth and Space Chemistry</i> ,	3.2	1

4	Wildfire-driven changes in the abundance of gas-phase pollutants in the city of Boise, ID during summer 2018. <i>Atmospheric Pollution Research</i> , 2022 , 13, 101269	4.5	О
3	Global simulations of monoterpene-derived peroxy radical fates and the distributions of highly oxygenated organic molecules (HOMs) and accretion products. <i>Atmospheric Chemistry and Physics</i> , 2022 , 22, 5477-5494	6.8	О
2	A Four Carbon Organonitrate as a Significant Product of Secondary Isoprene Chemistry. <i>Geophysical Research Letters</i> , 2022 , 49,	4.9	О
1	Effects of oligomerization and decomposition on the nanoparticle growth: a model study. <i>Atmospheric Chemistry and Physics</i> , 2022 , 22, 155-171	6.8	