Joel A Thornton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4836608/publications.pdf

Version: 2024-02-01

194 papers 18,197 citations

73 h-index 17090 122 g-index

239 all docs 239 docs citations

times ranked

239

8300 citing authors

#	Article	IF	CITATIONS
1	A large source of low-volatility secondary organic aerosol. Nature, 2014, 506, 476-479.	13.7	1,448
2	A large atomic chlorine source inferred from mid-continental reactive nitrogen chemistry. Nature, 2010, 464, 271-274.	13.7	562
3	Recent advances in understanding secondary organic aerosol: Implications for global climate forcing. Reviews of Geophysics, 2017, 55, 509-559.	9.0	548
4	Highly Oxygenated Organic Molecules (HOM) from Gas-Phase Autoxidation Involving Peroxy Radicals: A Key Contributor to Atmospheric Aerosol. Chemical Reviews, 2019, 119, 3472-3509.	23.0	460
5	An lodide-Adduct High-Resolution Time-of-Flight Chemical-Ionization Mass Spectrometer: Application to Atmospheric Inorganic and Organic Compounds. Environmental Science & Eamp; Technology, 2014, 48, 6309-6317.	4.6	406
6	A novel method for online analysis of gas and particle composition: description and evaluation of a Filter Inlet for Gases and AEROsols (FIGAERO). Atmospheric Measurement Techniques, 2014, 7, 983-1001.	1,2	345
7	Tropospheric Halogen Chemistry: Sources, Cycling, and Impacts. Chemical Reviews, 2015, 115, 4035-4062.	23.0	344
8	Toward a general parameterization of N& lt; sub& lt; sub& lt; /sub& gt; reactivity on aqueous particles: the competing effects of particle liquid water, nitrate and chloride. Atmospheric Chemistry and Physics, 2009, 9, 8351-8363.	1.9	310
9	Nitrate radicals and biogenic volatile organic compounds: oxidation, mechanisms, and organic aerosol. Atmospheric Chemistry and Physics, 2017, 17, 2103-2162.	1.9	307
10	Contribution of Nitrated Phenols to Wood Burning Brown Carbon Light Absorption in Detling, United Kingdom during Winter Time. Environmental Science & Environmental Science & 2013, 47, 6316-6324.	4.6	304
11	Highly functionalized organic nitrates in the southeast United States: Contribution to secondary organic aerosol and reactive nitrogen budgets. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1516-1521.	3.3	269
12	A thermal dissociation laser-induced fluorescence instrument for in situ detection of NO2, peroxy nitrates, alkyl nitrates, and HNO3. Journal of Geophysical Research, 2002, 107, ACH 4-1-ACH 4-14.	3.3	242
13	Atmospheric NO2:Â In Situ Laser-Induced Fluorescence Detection at Parts per Trillion Mixing Ratios. Analytical Chemistry, 2000, 72, 528-539.	3. 2	237
14	The Formation of Highly Oxidized Multifunctional Products in the Ozonolysis of Cyclohexene. Journal of the American Chemical Society, 2014, 136, 15596-15606.	6.6	236
15	Quantifying atmospheric nitrate formation pathways based on a global model of the oxygen isotopic composition (Δ ¹⁷ O) of atmospheric nitrate. Atmospheric Chemistry and Physics, 2009, 9, 5043-5056.	1.9	235
16	Secondary organic aerosol reduced by mixture of atmospheric vapours. Nature, 2019, 565, 587-593.	13.7	222
17	N2O5 hydrolysis on sub-micron organic aerosols: the effect of relative humidity, particle phase, and particle size. Physical Chemistry Chemical Physics, 2003, 5, 4593.	1.3	214
18	Insights into hydroxyl measurements and atmospheric oxidation in a California forest. Atmospheric Chemistry and Physics, 2012, 12, 8009-8020.	1.9	211

#	Article	IF	CITATIONS
19	Reactive Uptake of an Isoprene-Derived Epoxydiol to Submicron Aerosol Particles. Environmental Science & Environmental Science	4.6	208
20	Ozone production rates as a function of NOxabundances and HOxproduction rates in the Nashville urban plume. Journal of Geophysical Research, 2002, 107, ACH 7-1.	3.3	207
21	N2O5Reaction on Submicron Sea Salt Aerosol:Â Kinetics, Products, and the Effect of Surface Active Organics. Journal of Physical Chemistry A, 2005, 109, 10004-10012.	1.1	207
22	Quantifying trace gas uptake to tropospheric aerosol: recent advances and remaining challenges. Chemical Society Reviews, 2012, 41, 6555.	18.7	201
23	A field-deployable, chemical ionization time-of-flight mass spectrometer. Atmospheric Measurement Techniques, 2011, 4, 1471-1479.	1.2	200
24	A large and ubiquitous source of atmospheric formic acid. Atmospheric Chemistry and Physics, 2015, 15, 6283-6304.	1.9	197
25	The effect of varying levels of surfactant on the reactive uptake of N ₂ 0 _{to aqueous aerosol. Atmospheric Chemistry and Physics, 2006, 6, 1635-1644.}	1.9	196
26	Chlorine activation by N _{O₅: simultaneous, in situ detection of ClNO₂ and N₂5} by chemical	1.2	193
27	ionization mass spectrometry. Atmospheric Measurement Techniques, 2009, 2, 193-204. Monoterpenes are the largest source of summertime organic aerosol in the southeastern United States. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 2038-2043.	3.3	186
28	Nitryl Chloride and Molecular Chlorine in the Coastal Marine Boundary Layer. Environmental Science & E	4.6	177
29	Fine particle pH and the partitioning of nitric acid during winter in the northeastern United States. Journal of Geophysical Research D: Atmospheres, 2016, 121, 10,355.	1.2	176
30	Kinetics of Surface-Bound Benzo[a]pyrene and Ozone on Solid Organic and Salt Aerosols. Journal of Physical Chemistry A, 2004, 108, 11626-11634.	1.1	161
31	The role of chlorine in global tropospheric chemistry. Atmospheric Chemistry and Physics, 2019, 19, 3981-4003.	1.9	160
32	Molecular Composition and Volatility of Organic Aerosol in the Southeastern U.S.: Implications for IEPOX Derived SOA. Environmental Science & Eamp; Technology, 2016, 50, 2200-2209.	4.6	141
33	Constraining the sensitivity of iodide adduct chemical ionization mass spectrometry to multifunctional organic molecules using the collision limit and thermodynamic stability of iodide ion adducts. Atmospheric Measurement Techniques, 2016, 9, 1505-1512.	1.2	132
34	Effect of the Aerosol-Phase State on Secondary Organic Aerosol Formation from the Reactive Uptake of Isoprene-Derived Epoxydiols (IEPOX). Environmental Science and Technology Letters, 2018, 5, 167-174.	3.9	131
35	Urban pollution greatly enhances formation of natural aerosols over the Amazon rainforest. Nature Communications, 2019, 10, 1046.	5.8	131
36	Phase partitioning and volatility of secondary organic aerosol components formed from \hat{l}_{\pm} -pinene ozonolysis and OH oxidation: the importance of accretion products and other low volatility compounds. Atmospheric Chemistry and Physics, 2015, 15, 7765-7776.	1.9	126

#	Article	IF	Citations
37	The Oxidation of Oleate in Submicron Aqueous Salt Aerosols:Â Evidence of a Surface Process. Journal of Physical Chemistry A, 2007, 111, 1073-1083.	1.1	124
38	Direct observations of N $<$ sub $>$ 2 $<$ /sub $>$ 0 $<$ sub $>$ 5 $<$ /sub $>$ reactivity on ambient aerosol particles. Geophysical Research Letters, 2009, 36, .	1.5	124
39	The Chemistry of Atmosphere-Forest Exchange (CAFE) Model $\hat{a} \in \text{``Part 1: Model description and characterization. Atmospheric Chemistry and Physics, 2011, 11, 77-101.}$	1.9	124
40	Organic nitrate aerosol formation via NO ₃ + biogenic volatile organic compounds in the southeastern United States. Atmospheric Chemistry and Physics, 2015, 15, 13377-13392.	1.9	124
41	Formaldehyde production from isoprene oxidation acrossÂNO _{<i>x</i>} Âregimes. Atmospheric Chemistry and Physics, 2016, 16, 2597-2610.	1.9	124
42	Heterogeneous OH oxidation of palmitic acid in single component and internally mixed aerosol particles: vaporization and the role of particle phase. Atmospheric Chemistry and Physics, 2008, 8, 5465-5476.	1.9	118
43	Chemical feedbacks weaken the wintertime response of particulate sulfate and nitrate to emissions reductions over the eastern United States. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 8110-8115.	3.3	118
44	On alkyl nitrates, O3, and the "missing NOy― Journal of Geophysical Research, 2003, 108, .	3.3	113
45	Observational Insights into Aerosol Formation from Isoprene. Environmental Science & Emp; Technology, 2013, 47, 11403-11413.	4.6	113
46	Lightning enhancement over major oceanic shipping lanes. Geophysical Research Letters, 2017, 44, 9102-9111.	1.5	113
47	Understanding the role of the ground surface in HONO vertical structure: High resolution vertical profiles during NACHTT†1. Journal of Geophysical Research D: Atmospheres, 2013, 118, 10,155.	1.2	111
48	Increasing Isoprene Epoxydiol-to-Inorganic Sulfate Aerosol Ratio Results in Extensive Conversion of Inorganic Sulfate to Organosulfur Forms: Implications for Aerosol Physicochemical Properties. Environmental Science & Envi	4.6	111
49	Closing the peroxy acetyl nitrate budget: observations of acyl peroxy nitrates (PAN, PPN, and MPAN) during BEARPEX 2007. Atmospheric Chemistry and Physics, 2009, 9, 7623-7641.	1.9	105
50	Meteorology, Air Quality, and Health in London: The ClearfLo Project. Bulletin of the American Meteorological Society, 2015, 96, 779-804.	1.7	105
51	Chemical Characterization of Secondary Organic Aerosol from Oxidation of Isoprene Hydroxyhydroperoxides. Environmental Science & Environmental Science	4.6	105
52	Heterogeneous N ₂ O ₅ Uptake During Winter: Aircraft Measurements During the 2015 WINTER Campaign and Critical Evaluation of Current Parameterizations. Journal of Geophysical Research D: Atmospheres, 2018, 123, 4345-4372.	1.2	103
53	Effects of Chemical Complexity on the Autoxidation Mechanisms of Endocyclic Alkene Ozonolysis Products: From Methylcyclohexenes toward Understanding α-Pinene. Journal of Physical Chemistry A, 2015, 119, 4633-4650.	1.1	101
54	Ozone photochemistry in an oil and natural gas extraction region during winter: simulations of a snow-free season in the Uintah Basin, Utah. Atmospheric Chemistry and Physics, 2013, 13, 8955-8971.	1.9	100

#	Article	IF	Citations
55	Efficient Isoprene Secondary Organic Aerosol Formation from a Non-IEPOX Pathway. Environmental Science & Environmental Science	4.6	100
56	Quantification of organic aerosol and brown carbon evolution in fresh wildfire plumes. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 29469-29477.	3.3	100
57	A Chemical Ionization High-Resolution Time-of-Flight Mass Spectrometer Coupled to a Micro Orifice Volatilization Impactor (MOVI-HRToF-CIMS) for Analysis of Gas and Particle-Phase Organic Species. Aerosol Science and Technology, 2012, 46, 1313-1327.	1.5	99
58	Total Peroxy Nitrates (\hat{I} EPNs) in the atmosphere: the Thermal Dissociation-Laser Induced Fluorescence (TD-LIF) technique and comparisons to speciated PAN measurements. Atmospheric Measurement Techniques, 2010, 3, 593-607.	1.2	95
59	Chlorine activation within urban or power plant plumes: Vertically resolved ClNO ₂ and Cl ₂ measurements from a tall tower in a polluted continental setting. Journal of Geophysical Research D: Atmospheres, 2013, 118, 8702-8715.	1.2	94
60	Reactivity of stabilized Criegee intermediates (sCls) from isoprene and monoterpene ozonolysis toward SO ₂ and organic acids. Atmospheric Chemistry and Physics, 2014, 14, 12143-12153.	1.9	94
61	Modeling the Detection of Organic and Inorganic Compounds Using Iodide-Based Chemical Ionization. Journal of Physical Chemistry A, 2016, 120, 576-587.	1.1	93
62	Eddy covariance fluxes of acyl peroxy nitrates (PAN, PPN and MPAN) above a Ponderosa pine forest. Atmospheric Chemistry and Physics, 2009, 9, 615-634.	1.9	92
63	On the temperature dependence of organic reactivity, nitrogen oxides, ozone production, and the impact of emission controls in San Joaquin Valley, California. Atmospheric Chemistry and Physics, 2014, 14, 3373-3395.	1.9	92
64	Assessing known pathways for HO $<$ sub $>$ 2 $<$ /sub $>$ loss in aqueous atmospheric aerosols: Regional and global impacts on tropospheric oxidants. Journal of Geophysical Research, 2008, 113, .	3.3	91
65	An extractive electrospray ionization time-of-flight mass spectrometer (EESI-TOF) for online measurement of atmospheric aerosol particles. Atmospheric Measurement Techniques, 2019, 12, 4867-4886.	1.2	91
66	Semicontinuous measurements of gas–particle partitioning of organic acids in a ponderosa pine forest using a MOVI-HRToF-CIMS. Atmospheric Chemistry and Physics, 2014, 14, 1527-1546.	1.9	89
67	Computational Study of Hydrogen Shifts and Ring-Opening Mechanisms in $\hat{l}\pm$ -Pinene Ozonolysis Products. Journal of Physical Chemistry A, 2015, 119, 11366-11375.	1.1	89
68	Heterogeneous Reactions of Isoprene-Derived Epoxides: Reaction Probabilities and Molar Secondary Organic Aerosol Yield Estimates. Environmental Science and Technology Letters, 2015, 2, 38-42.	3.9	89
69	Molecular identification of organic vapors driving atmospheric nanoparticle growth. Nature Communications, 2019, 10, 4442.	5. 8	89
70	N ₂ O ₅ uptake coefficients and nocturnal NO ₂ removal rates determined from ambient wintertime measurements. Journal of Geophysical Research D: Atmospheres, 2013, 118, 9331-9350.	1,2	87
71	An MCM modeling study of nitryl chloride (ClNO ₂) impacts on oxidation, ozone production and nitrogen oxide partitioning in polluted continental outflow. Atmospheric Chemistry and Physics, 2014, 14, 3789-3800.	1.9	87
72	The Chemistry of Atmosphere-Forest Exchange (CAFE) Model – Part 2: Application to BEARPEX-2007 observations. Atmospheric Chemistry and Physics, 2011, 11, 1269-1294.	1.9	85

#	Article	IF	Citations
73	Growth Kinetics and Size Distribution Dynamics of Viscous Secondary Organic Aerosol. Environmental Science & Environmental Sci	4.6	85
74	Reactive uptake of N _{O₅ to internally mixed inorganic and organic particles: the role of organic carbon oxidation state and inferred organic phase separations. Atmospheric Chemistry and Physics, 2014, 14, 5693-5707.}	1.9	84
75	Quantitative constraints on autoxidation and dimer formation from direct probing of monoterpene-derived peroxy radical chemistry. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 12142-12147.	3.3	81
76	Multiphase reactivity of gaseous hydroperoxide oligomers produced from isoprene ozonolysis in the presence of acidified aerosols. Atmospheric Environment, 2017, 152, 314-322.	1.9	80
77	An Odd Oxygen Framework for Wintertime Ammonium Nitrate Aerosol Pollution in Urban Areas: NO _x and VOC Control as Mitigation Strategies. Geophysical Research Letters, 2019, 46, 4971-4979.	1.5	80
78	Observations of total alkyl nitrates during Texas Air Quality Study 2000: Implications for O3and alkyl nitrate photochemistry. Journal of Geophysical Research, 2004, 109, .	3.3	79
79	Forest-atmosphere exchange of ozone: sensitivity to very reactive biogenic VOC emissions and implications for in-canopy photochemistry. Atmospheric Chemistry and Physics, 2011, 11, 7875-7891.	1.9	78
80	Formation of Low-Volatility Organic Compounds in the Atmosphere: Recent Advancements and Insights. Journal of Physical Chemistry Letters, 2017, 8, 1503-1511.	2.1	78
81	Anthropogenic enhancements to production of highly oxygenated molecules from autoxidation. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 6641-6646.	3.3	78
82	Ozone depletion events observed in the high latitude surface layer during the TOPSE aircraft program. Journal of Geophysical Research, 2003, 108, TOP 4-1.	3.3	75
83	The Essential Role for Laboratory Studies in Atmospheric Chemistry. Environmental Science & Eamp; Technology, 2017, 51, 2519-2528.	4.6	75
84	BAECC: A Field Campaign to Elucidate the Impact of Biogenic Aerosols on Clouds and Climate. Bulletin of the American Meteorological Society, 2016, 97, 1909-1928.	1.7	71
85	Ambient observations of dimers from terpene oxidation in the gas phase: Implications for new particle formation and growth. Geophysical Research Letters, 2017, 44, 2958-2966.	1.5	71
86	Sources and Secondary Production of Organic Aerosols in the Northeastern United States during WINTER. Journal of Geophysical Research D: Atmospheres, 2018, 123, 7771-7796.	1.2	71
87	Molecular composition and volatility of isoprene photochemicalÂoxidationÂsecondaryÂorganic aerosolÂunderÂlow-ÂandÂhigh-NO _{<i>x</i>Atmospheric Chemistry and Physics, 2017, 17, 159-174.}	mp;gt,9Âcon	ditizons.
88	Nitrogen, Aerosol Composition, and Halogens on a Tall Tower (NACHTT): Overview of a wintertime air chemistry field study in the front range urban corridor of Colorado. Journal of Geophysical Research D: Atmospheres, 2013, 118, 8067-8085.	1,2	68
89	Nighttime chemical evolution of aerosol and trace gases in a power plant plume: Implications for secondary organic nitrate and organosulfate aerosol formation, NO ₃ radical chemistry, and N ₂ O ₅ heterogeneous hydrolysis. Journal of Geophysical Research, 2010, 115.	3.3	67
90	An experimental technique for the direct measurement of N ₂ reactivity on ambient particles. Atmospheric Measurement Techniques, 2009, 2, 231-242.	1,2	66

#	Article	IF	Citations
91	The primary and recycling sources of OH during the NACHTTâ€2011 campaign: HONO as an important OH primary source in the wintertime. Journal of Geophysical Research D: Atmospheres, 2014, 119, 6886-6896.	1.2	66
92	Comprehensive characterization of atmospheric organic carbon at a forested site. Nature Geoscience, 2017, 10, 748-753.	5.4	66
93	Measurements of HO2uptake to aqueous aerosol: Mass accommodation coefficients and net reactive loss. Journal of Geophysical Research, 2005, 110 , .	3.3	65
94	Direct N ₂ O ₅ reactivity measurements at a polluted coastal site. Atmospheric Chemistry and Physics, 2012, 12, 2959-2968.	1.9	64
95	Influence of trans-Pacific pollution transport on acyl peroxy nitrate abundances and speciation at Mount Bachelor Observatory during INTEX-B. Atmospheric Chemistry and Physics, 2007, 7, 5309-5325.	1.9	58
96	Instrumentation and measurement strategy for the NOAA SENEX aircraft campaign as part of the Southeast Atmosphere Study 2013. Atmospheric Measurement Techniques, 2016, 9, 3063-3093.	1.2	58
97	Global tropospheric halogen (Cl, Br, I) chemistry and its impact on oxidants. Atmospheric Chemistry and Physics, 2021, 21, 13973-13996.	1.9	57
98	Phase partitioning of soluble trace gases with sizeâ€resolved aerosols in nearâ€surface continental air over northern Colorado, USA, during winter. Journal of Geophysical Research D: Atmospheres, 2013, 118, 9414-9427.	1.2	56
99	Ozone production chemistry in the presence of urban plumes. Faraday Discussions, 2016, 189, 169-189.	1.6	56
100	Comparisons of in situ and long path measurements of NO2in urban plumes. Journal of Geophysical Research, 2003, 108, .	3.3	54
101	The sea breeze/land breeze circulation in Los Angeles and its influence on nitryl chloride production in this region. Journal of Geophysical Research, 2012, 117, .	3.3	54
102	Emissions of Trace Organic Gases From Western U.S. Wildfires Based on WE AN Aircraft Measurements. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033838.	1.2	54
103	Particulate Organic Matter Detection Using a Micro-Orifice Volatilization Impactor Coupled to a Chemical Ionization Mass Spectrometer (MOVI-CIMS). Aerosol Science and Technology, 2010, 44, 61-74.	1.5	53
104	Isomerization of Second-Generation Isoprene Peroxy Radicals: Epoxide Formation and Implications for Secondary Organic Aerosol Yields. Environmental Science & Environmental Science & 2017, 51, 4978-4987.	4.6	53
105	NO _{x} Lifetime and NO _{y} Partitioning During WINTER. Journal of Geophysical Research D: Atmospheres, 2018, 123, 9813-9827.	1.2	52
106	HONO Emissions from Western U.S. Wildfires Provide Dominant Radical Source in Fresh Wildfire Smoke. Environmental Science & Eamp; Technology, 2020, 54, 5954-5963.	4.6	51
107	Observations of elevated formaldehyde over a forest canopy suggest missing sources from rapid oxidation of arboreal hydrocarbons. Atmospheric Chemistry and Physics, 2010, 10, 8761-8781.	1.9	50
108	Enhanced formation of isopreneâ€derived organic aerosol in sulfurâ€rich power plant plumes during Southeast Nexus. Journal of Geophysical Research D: Atmospheres, 2016, 121, 11,137.	1,2	50

#	Article	IF	CITATIONS
109	Measurements of the sum of HO _{NO₂ and CH₃O₂NO_{nO_{O_{O_{O_{NO}}	mp;gt;2&a	amp;lt;/sub&
110	Nitrogen Oxides Emissions, Chemistry, Deposition, and Export Over the Northeast United States During the WINTER Aircraft Campaign. Journal of Geophysical Research D: Atmospheres, 2018, 123, 12,368.	1.2	49
111	Isothermal Evaporation of \hat{l}_{\pm} -Pinene Ozonolysis SOA: Volatility, Phase State, and Oligomeric Composition. ACS Earth and Space Chemistry, 2018, 2, 1058-1067.	1.2	49
112	Molecular mechanism for rapid autoxidation in \hat{l}_{\pm} -pinene ozonolysis. Nature Communications, 2021, 12, 878.	5.8	47
113	Constraining condensed-phase formation kinetics of secondary organic aerosol components from isoprene epoxydiols. Atmospheric Chemistry and Physics, 2016, 16, 1245-1254.	1.9	46
114	Online molecular characterization of fine particulate matter in Port Angeles, WA: Evidence for a major impact from residential wood smoke. Atmospheric Environment, 2016, 138, 99-107.	1.9	45
115	Effects of gas–wall interactions on measurements of semivolatile compounds and small polar molecules. Atmospheric Measurement Techniques, 2019, 12, 3137-3149.	1.2	45
116	Overview of the HI-SCALE Field Campaign: A New Perspective on Shallow Convective Clouds. Bulletin of the American Meteorological Society, 2019, 100, 821-840.	1.7	44
117	Analysis of secondary organic aerosol formation and aging using positive matrix factorization of high-resolution aerosol mass spectra: application to the dodecane low-NO _x system. Atmospheric Chemistry and Physics, 2012, 12, 11795-11817.	1.9	42
118	Production of N ₂ O ₅ and ClNO ₂ through Nocturnal Processing of Biomass-Burning Aerosol. Environmental Science & Environ	4.6	42
119	A model framework to retrieve thermodynamic and kinetic properties of organic aerosol from composition-resolved thermal desorption measurements. Atmospheric Chemistry and Physics, 2018, 18, 14757-14785.	1.9	42
120	Predicting secondary organic aerosol phase state and viscosity and its effect on multiphase chemistry in a regional-scale air quality model. Atmospheric Chemistry and Physics, 2020, 20, 8201-8225.	1.9	42
121	Photochemical modeling of glyoxal at a rural site: observations and analysis from BEARPEX 2007. Atmospheric Chemistry and Physics, 2011, 11, 8883-8897.	1.9	41
122	Emissions of Reactive Nitrogen From Western U.S. Wildfires During Summer 2018. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD032657.	1.2	41
123	Reacto-Diffusive Length of N ₂ O ₅ in Aqueous Sulfate- and Chloride-Containing Aerosol Particles. Journal of Physical Chemistry A, 2016, 120, 1039-1045.	1.1	40
124	Field intercomparison of the gas/particle partitioning of oxygenated organics during the Southern Oxidant and Aerosol Study (SOAS) in 2013. Aerosol Science and Technology, 2017, 51, 30-56.	1,5	39
125	Semi-volatile and highly oxygenated gaseous and particulate organic compounds observed above a boreal forest canopy. Atmospheric Chemistry and Physics, 2018, 18, 11547-11562.	1.9	39
126	Flight Deployment of a Highâ€Resolution Timeâ€ofâ€Flight Chemical Ionization Mass Spectrometer: Observations of Reactive Halogen and Nitrogen Oxide Species. Journal of Geophysical Research D: Atmospheres, 2018, 123, 7670-7686.	1,2	39

#	Article	IF	CITATIONS
127	Temperature dependent halogen activation by N ₅ reactions on halide-doped ice surfaces. Atmospheric Chemistry and Physics, 2012, 12, 5237-5247.	1.9	38
128	Chamber-based insights into the factors controlling epoxydiol (IEPOX) secondary organic aerosol (SOA) yield, composition, and volatility. Atmospheric Chemistry and Physics, 2019, 19, 11253-11265.	1.9	38
129	High upward fluxes of formic acid from a boreal forest canopy. Geophysical Research Letters, 2016, 43, 9342-9351.	1.5	36
130	Chemical transformations in monoterpene-derived organic aerosol enhanced by inorganic composition. Npj Climate and Atmospheric Science, 2019, 2, .	2.6	36
131	Evaluating Organic Aerosol Sources and Evolution with a Combined Molecular Composition and Volatility Framework Using the Filter Inlet for Gases and Aerosols (FIGAERO). Accounts of Chemical Research, 2020, 53, 1415-1426.	7.6	36
132	Photolysis Controls Atmospheric Budgets of Biogenic Secondary Organic Aerosol. Environmental Science &	4.6	36
133	Daytime Oxidized Reactive Nitrogen Partitioning in Western U.S. Wildfire Smoke Plumes. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033484.	1.2	36
134	Topâ€Down Estimates of NO _{<i>x</i>} and CO Emissions From Washington, D.C.â€Baltimore During the WINTER Campaign. Journal of Geophysical Research D: Atmospheres, 2018, 123, 7705-7724.	1.2	35
135	Nighttime and daytime dark oxidation chemistry in wildfire plumes: an observation and model analysis of FIREX-AQ aircraft data. Atmospheric Chemistry and Physics, 2021, 21, 16293-16317.	1.9	34
136	Identifying precursors and aqueous organic aerosol formation pathways during the SOAS campaign. Atmospheric Chemistry and Physics, 2016, 16, 14409-14420.	1.9	33
137	Airborne and ground-based observations of ammonium-nitrate-dominated aerosols in a shallow boundary layer during intense winter pollution episodes in northern Utah. Atmospheric Chemistry and Physics, 2018, 18, 17259-17276.	1.9	33
138	Airborne Observations of Reactive Inorganic Chlorine and Bromine Species in the Exhaust of Coalâ€Fired Power Plants. Journal of Geophysical Research D: Atmospheres, 2018, 123, 11225-11237.	1.2	33
139	On the contribution of nocturnal heterogeneous reactive nitrogen chemistry to particulate matter formation during wintertime pollution events in Northern Utah. Atmospheric Chemistry and Physics, 2019, 19, 9287-9308.	1.9	33
140	Chemical transport models often underestimate inorganic aerosol acidity in remote regions of the atmosphere. Communications Earth & Environment, $2021, 2, \ldots$	2.6	32
141	CINO ₂ Yields From Aircraft Measurements During the 2015 WINTER Campaign and Critical Evaluation of the Current Parameterization. Journal of Geophysical Research D: Atmospheres, 2018, 123, 12,994.	1.2	31
142	Variability and Time of Day Dependence of Ozone Photochemistry in Western Wildfire Plumes. Environmental Science & Environment	4.6	31
143	Decadal changes in summertime reactive oxidized nitrogen and surface ozone over the Southeast United States. Atmospheric Chemistry and Physics, 2018, 18, 2341-2361.	1.9	30
144	Biomass Burning Markers and Residential Burning in the WINTER Aircraft Campaign. Journal of Geophysical Research D: Atmospheres, 2019, 124, 1846-1861.	1.2	30

#	Article	IF	CITATIONS
145	Interannual variability of long-range transport as seen at the Mt. Bachelor observatory. Atmospheric Chemistry and Physics, 2009, 9, 557-572.	1.9	28
146	Anthropogenic Control Over Wintertime Oxidation of Atmospheric Pollutants. Geophysical Research Letters, 2019, 46, 14826-14835.	1.5	28
147	Rapid cloud removal of dimethyl sulfide oxidation products limits SO ₂ and cloud condensation nuclei production in the marine atmosphere. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	28
148	Widespread Pollution From Secondary Sources of Organic Aerosols During Winter in the Northeastern United States. Geophysical Research Letters, 2019, 46, 2974-2983.	1.5	25
149	Heterogeneous Nitrate Production Mechanisms in Intense Haze Events in the North China Plain. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD034688.	1.2	25
150	Reactive nitrogen partitioning and its relationship to winter ozone events in Utah. Atmospheric Chemistry and Physics, 2016, 16, 573-583.	1.9	24
151	Wintertime Gasâ€Particle Partitioning and Speciation of Inorganic Chlorine in the Lower Troposphere Over the Northeast United States and Coastal Ocean. Journal of Geophysical Research D: Atmospheres, 2018, 123, 12,897.	1.2	21
152	Performance of a new coaxial ion–molecule reaction region for low-pressure chemical ionization mass spectrometry with reduced instrument wall interactions. Atmospheric Measurement Techniques, 2019, 12, 5829-5844.	1.2	20
153	An electrospray chemical ionization source for real-time measurement of atmospheric organic and inorganic vapors. Atmospheric Measurement Techniques, 2017, 10, 3609-3625.	1.2	19
154	Estimating the saturation vapor pressures of isoprene oxidation products C ₅ H ₁₂ O <sub&and c<sub="">5H₁₀O_{O&}}}</sub&and>	1.9	19
155	using COSMO-RS. Atmospheric Chemistry and Physics, 2018, 18, 17589-17600. Observational Constraints on the Formation of Cl ₂ From the Reactive Uptake of ClNO ₂ on Aerosols in the Polluted Marine Boundary Layer. Journal of Geophysical Research D: Atmospheres, 2019, 124, 8851-8869.	1.2	19
156	Resolving Ambient Organic Aerosol Formation and Aging Pathways with Simultaneous Molecular Composition and Volatility Observations. ACS Earth and Space Chemistry, 2020, 4, 391-402.	1.2	19
157	Molecular composition and volatility of multi-generation products formed from isoprene oxidation by nitrate radical. Atmospheric Chemistry and Physics, 2021, 21, 10799-10824.	1.9	19
158	Observations and Modeling of NO <i></i> Photochemistry and Fate in Fresh Wildfire Plumes. ACS Earth and Space Chemistry, 2021, 5, 2652-2667.	1.2	17
159	Observations of atmosphere-biosphere exchange of total and speciated peroxynitrates: nitrogen fluxes and biogenic sources of peroxynitrates. Atmospheric Chemistry and Physics, 2012, 12, 9763-9773.	1.9	16
160	A Near-Explicit Mechanistic Evaluation of Isoprene Photochemical Secondary Organic Aerosol Formation and Evolution: Simulations of Multiple Chamber Experiments with and without Added NO _{<i>x</i>xxxxxxx}	1.2	16
161	Wintertime Overnight NO _{<i>x</i>} Removal in a Southeastern United States Coalâ€fired Power Plant Plume: A Model for Understanding Winter NO _{<i>x</i>} Processing and its Implications. Journal of Geophysical Research D: Atmospheres, 2018, 123, 1412-1425.	1.2	14
162	N ₂ O ₅ reactive uptake kinetics and chlorine activation on authentic biomass-burning aerosol. Environmental Sciences: Processes and Impacts, 2019, 21, 1684-1698.	1.7	14

#	Article	IF	CITATIONS
163	Long-term observational constraints of organic aerosol dependence on inorganic species in the southeast US. Atmospheric Chemistry and Physics, 2020, 20, 13091-13107.	1.9	14
164	Gas to Particle Partitioning of Organic Acids in the Boreal Atmosphere. ACS Earth and Space Chemistry, 2019, 3, 1279-1287.	1.2	13
165	Heterogeneous Nucleation Drives Particle Size Segregation in Sequential Ozone and Nitrate Radical Oxidation of Catechol. Environmental Science & Eamp; Technology, 2021, 55, 15637-15645.	4.6	13
166	Locally Enhanced Aerosols Over a Shipping Lane Produce Convective Invigoration but Weak Overall Indirect Effects in Cloudâ€Resolving Simulations. Geophysical Research Letters, 2018, 45, 9305-9313.	1.5	12
167	Rates of Wintertime Atmospheric SO ₂ Oxidation based on Aircraft Observations during Clearâ€Sky Conditions over the Eastern United States. Journal of Geophysical Research D: Atmospheres, 2019, 124, 6630-6649.	1.2	12
168	Empirical Insights Into the Fate of Ammonia in Western U.S. Wildfire Smoke Plumes. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033730.	1.2	12
169	Thermalized Epoxide Formation in the Atmosphere. Journal of Physical Chemistry A, 2019, 123, 10620-10630.	1.1	11
170	Novel Analysis to Quantify Plume Crosswind Heterogeneity Applied to Biomass Burning Smoke. Environmental Science & Environment	4.6	11
171	Daily and intraseasonal relationships between lightning and NO ₂ over the Maritime Continent. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	10
172	Complexity in the Evolution, Composition, and Spectroscopy of Brown Carbon in Aircraft Measurements of Wildfire Plumes. Geophysical Research Letters, 2022, 49, .	1.5	10
173	A robust clustering algorithm for analysis of composition-dependent organic aerosol thermal desorption measurements. Atmospheric Chemistry and Physics, 2020, 20, 2489-2512.	1.9	9
174	Reaction Mechanisms Underlying Unfunctionalized Alkyl Nitrate Hydrolysis in Aqueous Aerosols. ACS Earth and Space Chemistry, 2021, 5, 210-225.	1.2	9
175	Wintertime Formaldehyde: Airborne Observations and Source Apportionment Over the Eastern United States. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033518.	1.2	9
176	Significant Decrease in Wet Deposition of Anthropogenic Chloride Across the Eastern United States, 1998–2018. Geophysical Research Letters, 2020, 47, e2020GL090195.	1.5	9
177	Pathways to Highly Oxidized Products in the Δ3-Carene + OH System. Environmental Science & Emp; Technology, 2022, 56, 2213-2224.	4.6	8
178	A Four Carbon Organonitrate as a Significant Product of Secondary Isoprene Chemistry. Geophysical Research Letters, 2022, 49, .	1.5	8
179	Comparison of Airborne Reactive Nitrogen Measurements During WINTER. Journal of Geophysical Research D: Atmospheres, 2019, 124, 10483-10502.	1,2	7
180	Spatially Resolved Photochemistry Impacts Emissions Estimates in Fresh Wildfire Plumes. Geophysical Research Letters, 2021, 48, e2021GL095443.	1.5	7

#	Article	IF	Citations
181	The CU Airborne Solar Occultation Flux Instrument: Performance Evaluation during BB-FLUX. ACS Earth and Space Chemistry, 2022, 6, 582-596.	1.2	7
182	Global simulations of monoterpene-derived peroxy radical fates and the distributions of highly oxygenated organic molecules (HOMs) and accretion products. Atmospheric Chemistry and Physics, 2022, 22, 5477-5494.	1.9	6
183	Response of the Reaction Probability of N ₂ O ₅ with Authentic Biomass-Burning Aerosol to High Relative Humidity. ACS Earth and Space Chemistry, 2021, 5, 2587-2598.	1.2	5
184	Transport and chemistry of isoprene and its oxidation products in deep convective clouds. Tellus, Series B: Chemical and Physical Meteorology, 2022, 73, 1979856.	0.8	5
185	Wildfire-driven changes in the abundance of gas-phase pollutants in the city of Boise, ID during summer 2018. Atmospheric Pollution Research, 2022, 13, 101269.	1.8	5
186	A Novel Framework to Study Trace Gas Transport in Deep Convective Clouds. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS001931.	1.3	4
187	Effects of oligomerization and decomposition on the nanoparticle growth: a model study. Atmospheric Chemistry and Physics, 2022, 22, 155-171.	1.9	4
188	Formation and Evolution of Catechol-Derived SOA Mass, Composition, Volatility, and Light Absorption. ACS Earth and Space Chemistry, 0, , .	1.2	3
189	Probing aerosol formation by comprehensive measurements of gas phase oxidation products. , 2013, , .		0
190	Appreciation of 2017 GRL Peer Reviewers. Geophysical Research Letters, 2018, 45, 4494-4528.	1.5	0
191	Thank You to Our 2018 Peer Reviewers. Geophysical Research Letters, 2019, 46, 12608-12636.	1.5	0
192	Thank You to Our 2019 Peer Reviewers. Geophysical Research Letters, 2020, 47, e2020GL088048.	1.5	0
193	Thank You to Our 2020 Peer Reviewers. Geophysical Research Letters, 2021, 48, e2021GL093126.	1.5	0
194	Thank You to Our 2021 Peer Reviewers. Geophysical Research Letters, 2022, 49, .	1.5	0