
John D Catravas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4836511/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	HSP90 Inhibitors Modulate SARS-CoV-2 Spike Protein Subunit 1-Induced Human Pulmonary Microvascular Endothelial Activation and Barrier Dysfunction. Frontiers in Physiology, 2022, 13, 812199.	1.3	17
2	The Inflammasome NLR Family Pyrin Domain-Containing Protein 3 (NLRP3) as a Novel Therapeutic Target for Idiopathic Pulmonary Fibrosis. American Journal of Pathology, 2022, 192, 837-846.	1.9	19
3	The Heat Shock Protein 90 Inhibitor, AT13387, Protects the Alveolo-Capillary Barrier and Prevents HCl-Induced Chronic Lung Injury and Pulmonary Fibrosis. Cells, 2022, 11, 1046.	1.8	11
4	Alcohol Increases Lung Angiotensin-Converting Enzyme 2 Expression and Exacerbates Severe Acute Respiratory Syndrome Coronavirus 2 Spike Protein Subunit 1–Induced Acute Lung Injury in K18-hACE2 Transgenic Mice. American Journal of Pathology, 2022, 192, 990-1000.	1.9	14
5	Sex-Related Differences in Murine Models of Chemically Induced Pulmonary Fibrosis. International Journal of Molecular Sciences, 2021, 22, 5909.	1.8	15
6	Single intratracheal exposure to SARSâ€CoVâ€2 S1 spike protein induces acute lung injury in K18â€hACE2 transgenic mice. FASEB Journal, 2021, 35, .	0.2	2
7	The HSP90 Inhibitor, AUY-922, Protects and Repairs Human Lung Microvascular Endothelial Cells from Hydrochloric Acid-Induced Endothelial Barrier Dysfunction. Cells, 2021, 10, 1489.	1.8	12
8	The SARS-CoV-2 spike protein subunit S1 induces COVID-19-like acute lung injury in Κ18-hACE2 transgenic mice and barrier dysfunction in human endothelial cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2021, 321, L477-L484.	1.3	82
9	Age-Dependent Chronic Lung Injury and Pulmonary Fibrosis following Single Exposure to Hydrochloric Acid. International Journal of Molecular Sciences, 2021, 22, 8833.	1.8	14
10	Dietary Phytoestrogens Ameliorate Hydrochloric Acid-Induced Chronic Lung Injury and Pulmonary Fibrosis in Mice. Nutrients, 2021, 13, 3599.	1.7	18
11	HSP90 Inhibition and Modulation of the Proteome: Therapeutical Implications for Idiopathic Pulmonary Fibrosis (IPF). International Journal of Molecular Sciences, 2020, 21, 5286.	1.8	29
12	Protective Mechanism of the Selective Vasopressin V _{1A} Receptor Agonist Selepressin against Endothelial Barrier Dysfunction. Journal of Pharmacology and Experimental Therapeutics, 2020, 375, 286-295.	1.3	7
13	Development of chronic lung injury and pulmonary fibrosis in mice following acute exposure to nitrogen mustard. Inhalation Toxicology, 2020, 32, 141-154.	0.8	14
14	Post-treatment with a heat shock protein 90 inhibitor prevents chronic lung injury and pulmonary fibrosis, following acute exposure of mice to HCl. Experimental Lung Research, 2020, 46, 203-216.	0.5	24
15	Quercetin and Vitamin C: An Experimental, Synergistic Therapy for the Prevention and Treatment of SARS-CoV-2 Related Disease (COVID-19). Frontiers in Immunology, 2020, 11, 1451.	2.2	348
16	The HSP90 Inhibitor, AUY-922, Ameliorates the Development of Nitrogen Mustard-Induced Pulmonary Fibrosis and Lung Dysfunction in Mice. International Journal of Molecular Sciences, 2020, 21, 4740.	1.8	20
17	Acute exposure of mice to hydrochloric acid leads to the development of chronic lung injury and pulmonary fibrosis. Inhalation Toxicology, 2019, 31, 147-160.	0.8	24
18	P53 supports endothelial barrier function via APE1/Ref1 suppression. Immunobiology, 2019, 224, 532-538.	0.8	30

#	Article	IF	CITATIONS
19	Hsp90 inhibitors suppress P53 phosphorylation in LPS - induced endothelial inflammation. Cytokine, 2019, 113, 427-432.	1.4	44
20	Hsp90 Inhibitors Suppress P53 Phosphorylation in LPSâ€Induced Endothelial Inflammation. FASEB Journal, 2019, 33, 709.6.	0.2	0
21	Wildâ€ŧype p53 enhances endothelial barrier function by mediating <scp>RAC</scp> 1 signalling and RhoA inhibition. Journal of Cellular and Molecular Medicine, 2018, 22, 1792-1804.	1.6	54
22	Hydrocortisone, Vitamin C, and Thiamine for the Treatment of Severe Sepsis and Septic Shock. Chest, 2017, 151, 1229-1238.	0.4	729
23	Response. Chest, 2017, 152, 678-679.	0.4	0
24	Response. Chest, 2017, 152, 690-691.	0.4	0
25	Response. Chest, 2017, 152, 677.	0.4	0
26	Hydrocortisone and Ascorbic Acid Synergistically Prevent and Repair Lipopolysaccharide-Induced Pulmonary Endothelial Barrier Dysfunction. Chest, 2017, 152, 954-962.	0.4	102
27	Response. Chest, 2017, 152, 451-452.	0.4	2
28	Response. Chest, 2017, 152, 223-224.	0.4	0
29	Nanosecond pulsed platelet-rich plasma (nsPRP) improves mechanical and electrical cardiac function following myocardial reperfusion injury. Physiological Reports, 2016, 4, e12710.	0.7	20
30	Hsp90 inhibition suppresses NF-κB transcriptional activation via Sirt-2 in human lung microvascular endothelial cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2016, 310, L964-L974.	1.3	34
31	Regulation of pulmonary endothelial barrier function by kinases. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2016, 311, L832-L845.	1.3	48
32	P53: "The Wall Watcher― Medical & Surgical Urology, 2015, 04, .	0.0	2
33	Histone deacetylase inhibitors prevent pulmonary endothelial hyperpermeability and acute lung injury by regulating heat shock protein 90 function. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2015, 309, L1410-L1419.	1.3	37
34	p53 protects against LPS-induced lung endothelial barrier dysfunction. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2015, 308, L776-L787.	1.3	61
35	Heat Shock Protein 90 Inhibitors Prevent LPS-Induced Endothelial Barrier Dysfunction by Disrupting RhoA Signaling. American Journal of Respiratory Cell and Molecular Biology, 2014, 50, 170-179.	1.4	61
36	PKC-Dependent Phosphorylation of eNOS at T495 Regulates eNOS Coupling and Endothelial Barrier Function in Response to G+ -Toxins. PLoS ONE, 2014, 9, e99823.	1.1	46

#	Article	IF	CITATIONS
37	Novel Mechanism of Attenuation of LPS-Induced NF-ήB Activation by the Heat Shock Protein 90 Inhibitor, 17-N-allylamino-17-demethoxygeldanamycin, in Human Lung Microvascular Endothelial Cells. American Journal of Respiratory Cell and Molecular Biology, 2014, 50, 942-952.	1.4	33
38	NADPH Oxidase 4 Is Expressed in Pulmonary Artery Adventitia and Contributes to Hypertensive Vascular Remodeling. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 1704-1715.	1.1	103
39	LPS induces pp60 ^{c-src} -mediated tyrosine phosphorylation of Hsp90 in lung vascular endothelial cells and mouse lung. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2013, 304, L883-L893.	1.3	29
40	Opposing Actions of Heat Shock Protein 90 and 70 Regulate Nicotinamide Adenine Dinucleotide Phosphate Oxidase Stability and Reactive Oxygen Species Production. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 2989-2999.	1.1	76
41	Regulation of endothelial barrier function by TGFâ€Î² type I receptor ALK5: Potential role of contractile mechanisms and heat shock protein 90. Journal of Cellular Physiology, 2012, 227, 759-771.	2.0	19
42	Hsp90 inhibition prevents monocrotalineâ€induced pulmonary hypertension in rats, as revealed by high resolution echocardiography. FASEB Journal, 2012, 26, 873.17.	0.2	0
43	Hsp90 Regulates NADPH Oxidase Activity and Is Necessary for Superoxide but Not Hydrogen Peroxide Production. Antioxidants and Redox Signaling, 2011, 14, 2107-2119.	2.5	78
44	Hsp90 regulates NADPH oxidase activity and is necessary for superoxide but not hydrogen peroxide production. FASEB Journal, 2011, 25, 1094.5.	0.2	0
45	Glutathione Supplementation Attenuates Inflammation and Improves Lung Mechanics in a Murine Model of Acute Lung Injury. FASEB Journal, 2011, 25, 1101.11.	0.2	Ο
46	LPSâ€induced Hyperâ€permeability in Human Lung Microvascular Endothelial Cells (HLMVEC) Involves the Nitrationâ€Mediated Activation of RhoA. FASEB Journal, 2011, 25, 1101.2.	0.2	0
47	The hsp90 inhibitor, 17â€AAG, reduces pulmonary arterial calcineurin activity in monocrotalineâ€induced pulmonary arterial hypertension (PAH). FASEB Journal, 2011, 25, 1034.9.	0.2	Ο
48	Harvesting, identification and barrier function of human lung microvascular endothelial cells. Vascular Pharmacology, 2010, 52, 175-181.	1.0	38
49	Heat shock protein 90 inhibitors reduce airway inflammation in a mouse model of allergic asthma FASEB Journal, 2010, 24, 1062.5.	0.2	1
50	Regulators of endothelial and epithelial barrier integrity and function in acute lung injury. Biochemical Pharmacology, 2009, 77, 1763-1772.	2.0	214
51	The lectinâ€like domain of TNF, but not cAMP, protects from Listeriolysin Oâ€induced endothelial hyperpermeability. FASEB Journal, 2009, 23, LB389.	0.2	Ο
52	LPSâ€induced postâ€translational modifications of hsp90 in pulmonary endothelial cells. FASEB Journal, 2009, 23, 1024.14.	0.2	0
53	Estrogen reduces AHR, stimulates NO release and inhibits ROS production in murine asthmatic airways. FASEB Journal, 2009, 23, 622.11.	0.2	0
54	Heat shock protein 90 inhibitors attenuate LPS-induced endothelial hyperpermeability. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2008, 294, L755-L763.	1.3	72

#	Article	IF	CITATIONS
55	Heat Shock Protein 90 Inhibitors Protect and Restore Pulmonary Endothelial Barrier Function. American Journal of Respiratory Cell and Molecular Biology, 2008, 39, 551-559.	1.4	66
56	Hsp90 inhibitors prevent LPSâ€induced endothelial hyperâ€permeability by inhibiting pp60 src activation and maintaining adherens junction proteins. FASEB Journal, 2008, 22, 915.6.	0.2	0
57	Estrogen reduces inflammation of asthmatic airways by inhibiting pathways leading to oxidant stress FASEB Journal, 2008, 22, 929.6.	0.2	Ο
58	Heat Shock Protein 90 Inhibitors Prolong Survival, Attenuate Inflammation, and Reduce Lung Injury in Murine Sepsis. American Journal of Respiratory and Critical Care Medicine, 2007, 176, 667-675.	2.5	123
59	Barrierâ€protective effects of hsp90 inhibitors in bovine pulmonary arterial endothelial cells FASEB Journal, 2007, 21, A1430.	0.2	0
60	Heat Shock Protein Inhibition in Sickle Cell Disease: A Novel Approach to Attenuating the Inflammatory Response? Blood, 2007, 110, 2263-2263.	0.6	0
61	Functional Relevance of Golgi and Plasma Membrane Localized Endothelial Nitric Oxide Synthase (eNOS) in Reconstituted Endothelial cells. FASEB Journal, 2006, 20, A721.	0.2	0
62	CHIP, a novel associating partner of soluble guanylyl cyclase FASEB Journal, 2006, 20, A1126.	0.2	0
63	Effects of estrogen on bronchial hyperresponsiveness of ovariectomized murine tracheal rings sensitized with human asthmatic serum FASEB Journal, 2006, 20, A672.	0.2	0
64	Nitric oxide (NO) preconditioning protects endothelial cells against SNPâ€induced apoptosis via the hsp90â€sGC pathway FASEB Journal, 2006, 20, A230.	0.2	0
65	Pulmonary capillary endothelial dysfunction in early systemic sclerosis. Arthritis and Rheumatism, 2001, 44, 902-911.	6.7	43
66	Angiotensin II Relaxes Microvessels Via the AT ₂ Receptor and Ca ²⁺ -Activated K ⁺ (BK _{Ca}) Channels. Hypertension, 2001, 37, 301-307.	1.3	86
67	Long-Term Antioxidant Administration Attenuates Mineralocorticoid Hypertension and Renal Inflammatory Response. Hypertension, 2001, 37, 781-786.	1.3	212
68	Non-NF-κB elements are required for full induction of the rat type II nitric oxide synthase in vascular smooth muscle cells. British Journal of Pharmacology, 2000, 130, 270-278.	2.7	10
69	Quantification of eNOS mRNA in the canine cardiac vasculature by competitive PCR. American Journal of Physiology - Heart and Circulatory Physiology, 2000, 278, H658-H665.	1.5	14
70	Pulmonary Capillary Endothelium-Bound Angiotensin-Converting Enzyme Activity in Acute Lung Injury. Circulation, 2000, 102, 2011-2018.	1.6	153
71	Pulmonary Capillary Endothelium-Bound Angiotensin-Converting Enzyme Activity in Humans. Circulation, 1999, 99, 1593-1599.	1.6	62
72	Induction of nitric oxide synthase by protein synthesis inhibition in aortic smooth muscle cells. British Journal of Pharmacology, 1998, 123, 1000-1008.	2.7	8

#	Article	IF	CITATIONS
73	Estimation of the dissociation constants for pulmonary endothelial angiotensin converting enzyme reactions with trandolaprilat and enalaprilat in vivo. Drug Development Research, 1998, 44, 80-86.	1.4	2
74	Release of a leukocyte activation inhibitor by staurosporine-treated pulmonary artery endothelial cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 1998, 275, L184-L192.	1.3	0
75	Unaltered pulmonary capillary surface area in the presence of changing arterial resistance. American Journal of Physiology - Lung Cellular and Molecular Physiology, 1998, 274, L264-L269.	1.3	2
76	Sequential development of angiotensin receptors and angiotensin I converting enzyme during angiogenesis in the rat subcutaneous sponge granuloma. British Journal of Pharmacology, 1997, 120, 1302-1311.	2.7	59
77	Inhibition of pulmonary endothelial angiotensin converting enzyme activity by trandolaprilat in vivo. Drug Development Research, 1997, 41, 22-30.	1.4	3
78	Mechanisms of tolerance to sodium nitroprusside in rat cultured aortic smooth muscle cells. British Journal of Pharmacology, 1996, 117, 147-155.	2.7	59
79	Cytoskeletonâ€dependent activation of the inducible nitric oxide synthase in cultured aortic smooth muscle cells. British Journal of Pharmacology, 1996, 118, 1085-1094.	2.7	31
80	Downregulation of nitrovasodilatorâ€induced cyclic GMP accumulation in cells exposed to endotoxin or interleukinâ€ilî². British Journal of Pharmacology, 1996, 118, 1359-1366.	2.7	72
81	cGMP accumulation and gene expression of soluble guanylate cyclase in human vascular tissue. Journal of Cellular Physiology, 1996, 167, 213-221.	2.0	40
82	Isolation and culture of endothelial cells from the mesenteric vascular bed. Cytotechnology, 1995, 17, 257-262.	0.7	10
83	Prevention of nitric oxide synthase induction in vascular smooth muscle cells by microtubule depolymerizing agents. British Journal of Pharmacology, 1993, 109, 603-605.	2.7	25
84	Inhibition of endothelialâ€bound angiotensin converting enzyme, <i>in vivo</i> . British Journal of Pharmacology, 1990, 101, 121-127.	2.7	5