Hong Hu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4836486/publications.pdf

Version: 2024-02-01

53751 58549 8,332 182 45 82 citations h-index g-index papers 194 194 194 8413 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Geometrical analysis of auxetic woven fabrics based on foldable geometry. Textile Reseach Journal, 2022, 92, 317-329.	1.1	9
2	Design and manufacture of three-dimensional auxetic warp-knitted spacer fabrics based on re-entrant and rotating geometries. Textile Reseach Journal, 2022, 92, 467-478.	1.1	3
3	3D Fabrics with Negative Poisson's Ratio: A Review. Applied Composite Materials, 2022, 29, 95-108.	1.3	5
4	Curved inserts in auxetic honeycomb for property enhancement and design flexibility. Composite Structures, 2022, 280, 114892.	3.1	14
5	Three-dimensional composites with nearly isotropic negative Poisson's ratio by random inclusions: Experiments and finite element simulation. Composites Science and Technology, 2022, 218, 109195.	3.8	11
6	Warp knitting for preparation of high-performance apparels. , 2022, , 395-410.		1
7	In-plane mechanical properties of a novel hybrid auxetic structure. Smart Materials and Structures, 2022, 31, 075003.	1.8	12
8	Intestinal stents: Structure, functionalization and advanced engineering innovation., 2022, 137, 212810.		4
9	Design of novel 3D auxetic structures based on S-shaped unit-cells. Smart Materials and Structures, 2022, 31, 075024.	1.8	22
10	Inkjetâ€Printed Xerogel Scaffolds Enabled Roomâ€Temperature Fabrication of Highâ€Quality Metal Electrodes for Flexible Electronics. Advanced Functional Materials, 2022, 32, .	7.8	9
11	Three-dimensional narrow woven fabric with in-plane auxetic behavior. Textile Reseach Journal, 2022, 92, 4695-4708.	1.1	4
12	Deformation behavior of auxetic laminated fabrics with rotating square geometry. Textile Reseach Journal, 2022, 92, 4652-4665.	1.1	9
13	Compressive mechanics of warp-knitted spacer fabrics. Journal of Industrial Textiles, 2021, 51, 611-631.	1.1	5
14	Deformation behavior of auxetic woven fabric made of foldable geometry in different tensile directions. Textile Reseach Journal, 2021, 91, 87-99.	1.1	8
15	New concept of carbon fiber reinforced composite 3D auxetic lattice structures based on stretching-dominated cells. Mechanics of Materials, 2021, 152, 103661.	1.7	42
16	Auxetic behavior of warp knitted fabric under repeating tension. Textile Reseach Journal, 2021, 91, 1732-1741.	1.1	4
17	Finite Element Modeling of Auxetic Warpâ€Knitted Fabric Made of Reâ€entrant Geometry. Physica Status Solidi (B): Basic Research, 2021, 258, 2100107.	0.7	2
18	Predicting energy harvesting performance of a random nonlinear dielectric elastomer pendulum. Applied Energy, 2021, 289, 116696.	5.1	15

#	Article	IF	Citations
19	Deformation Behaviors of Auxetic Warp Knitted Fabrics Based on Reentrant Geometry. Physica Status Solidi (B): Basic Research, 2021, 258, 2000580.	0.7	2
20	Polymerâ€Assisted Metallization of Mammalian Cells. Advanced Materials, 2021, 33, e2102348.	11.1	12
21	Realizing Highâ€Energy and Stable Wireâ€Type Batteries with Flexible Lithium–Metal Composite Yarns. Advanced Energy Materials, 2021, 11, 2101809.	10.2	32
22	Poly(lactic acid) fibers, yarns and fabrics: Manufacturing, properties and applications. Textile Reseach Journal, 2021, 91, 1641-1669.	1.1	44
23	Development of auxetic warp knitted fabrics based on reentrant geometry. Textile Reseach Journal, 2020, 90, 344-356.	1.1	32
24	Deformation behavior of auxetic woven fabric based on re-entrant hexagonal geometry in different tensile directions. Textile Reseach Journal, 2020, 90, 410-421.	1.1	18
25	Auxeticity from the Folded Geometry: A Numerical Study. Physica Status Solidi (B): Basic Research, 2020, 257, 1900361.	0.7	11
26	Finite element modeling of 3D spacer fabric: Effect of the geometric variation and amount of spacer yarns. Composite Structures, 2020, 236, 111846.	3.1	31
27	Theoretical Modeling on the Deformation Behavior of Auxetic Tubular Braid Made from Modified Circular Braiding Technique. Physica Status Solidi (B): Basic Research, 2020, 257, 1900173.	0.7	9
28	Single―and Double‣ayered Bistretch Auxetic Woven Fabrics Made of Nonauxetic Yarns Based on Foldable Geometries. Physica Status Solidi (B): Basic Research, 2020, 257, 1900156.	0.7	22
29	In-plane elasticity of regular hexagonal honeycombs with three different joints: A comparative study. Mechanics of Materials, 2020, 148, 103496.	1.7	16
30	Additive Functionalization and Embroidery for Manufacturing Wearable and Washable Textile Supercapacitors. Advanced Functional Materials, 2020, 30, 1910541.	7.8	55
31	Nonlinear vibration of knitted spacer fabric under harmonic excitation. Journal of Engineered Fibers and Fabrics, 2020, 15, 155892502098356.	0.5	5
32	Auxetic structures and mechanisms. , 2019, , 19-56.		5
33	Auxetic fibres and yarns., 2019,, 93-140.		2
34	Auxetic fabrics based on knitted structures. , 2019, , 141-189.		3
35	Auxetic fabrics based on braided structures. , 2019, , 265-283.		2
36	Auxetic fibre–reinforced composites. , 2019, , 285-335.		3

#	Article	IF	CITATIONS
37	Applications of auxetic textiles. , 2019, , 337-350.		5
38	Auxetic fabrics based on woven structures. , 2019, , 191-246.		0
39	Mechanical modeling of an auxetic tubular braided structure: Experimental and numerical analyses. International Journal of Mechanical Sciences, 2019, 160, 182-191.	3.6	23
40	Geometrical analysis of bi-stretch auxetic woven fabric based on re-entrant hexagonal geometry. Textile Reseach Journal, 2019, 89, 4476-4490.	1,1	20
41	Bi-stretch auxetic woven fabrics based on foldable geometry. Textile Reseach Journal, 2019, 89, 2694-2712.	1.1	40
42	Finite element simulation of an auxetic plied yarn structure. Textile Reseach Journal, 2019, 89, 3394-3400.	1.1	11
43	Auxetic Yarn Made with Circular Braiding Technology. Physica Status Solidi (B): Basic Research, 2019, 256, 1800168.	0.7	31
44	Development of Biâ€Stretch Auxetic Woven Fabrics Based on Reâ€Entrant Hexagonal Geometry. Physica Status Solidi (B): Basic Research, 2019, 256, 1800172.	0.7	34
45	Toward Enhancing Wearability and Fashion of Wearable Supercapacitor with Modified Polyurethane Artificial Leather Electrolyte. Nano-Micro Letters, 2018, 10, 38.	14.4	42
46	Development of uni-stretch woven fabrics with zero and negative Poisson's ratio. Textile Reseach Journal, 2018, 88, 2076-2092.	1.1	50
47	A study of tubular braided structure with negative Poisson's ratio behavior. Textile Reseach Journal, 2018, 88, 2810-2824.	1.1	27
48	Low-velocity impact properties of 3D auxetic textile composite. Journal of Materials Science, 2018, 53, 3899-3914.	1.7	36
49	Application of Superabsorbent Spacer Fabrics as Exuding Wound Dressing. Polymers, 2018, 10, 210.	2.0	29
50	Woven Fabrics Made of Auxetic Plied Yarns. Polymers, 2018, 10, 226.	2.0	49
51	Finite Element Analysis of Three-Dimensional (3D) Auxetic Textile Composite under Compression. Polymers, 2018, 10, 374.	2.0	5
52	Integrating a Triboelectric Nanogenerator and a Zincâ€lon Battery on a Designed Flexible 3D Spacer Fabric. Small Methods, 2018, 2, 1800150.	4.6	78
53	A theoretical analysis of deformation behavior of auxetic plied yarn structure. Smart Materials and Structures, 2018, 27, 075003.	1.8	7
54	Recent progresses in high-energy-density all pseudocapacitive-electrode-materials-based asymmetric supercapacitors. Journal of Materials Chemistry A, 2017, 5, 9443-9464.	5.2	278

#	Article	IF	Citations
55	Recent progress of fiber-shaped asymmetric supercapacitors. Materials Today Energy, 2017, 5, 1-14.	2.5	80
56	A study on negative Poisson's ratio effect of 3D auxetic orthogonal textile composites under compression. Smart Materials and Structures, 2017, 26, 065014.	1.8	26
57	A novel silver-containing absorbent wound dressing based on spacer fabric. Journal of Materials Chemistry B, 2017, 5, 6786-6793.	2.9	20
58	Core-shell-core heterostructural engineering of Y2O3:Eu3+/MCM-41/YVO4:Eu3+ for enhanced red emission and tunable, broadened-band response to excitation. Journal of Materials Science: Materials in Electronics, 2017, 28, 16026-16035.	1,1	4
59	Tensile and Deformation Behavior of Auxetic Plied Yarns. Physica Status Solidi (B): Basic Research, 2017, 254, 1600790.	0.7	24
60	Weavable, Conductive Yarn-Based NiCo/ $ $ Zn Textile Battery with High Energy Density and Rate Capability. ACS Nano, 2017, 11, 8953-8961.	7.3	310
61	Spacer fabric-based exuding wound dressing $\hat{a}\in$ Part I: Structural design, fabrication and property evaluation of spacer fabrics. Textile Reseach Journal, 2017, 87, 1469-1480.	1.1	18
62	Low-velocity impact response of multilayer orthogonal structural composite with auxetic effect. Composite Structures, 2017, 169, 62-68.	3.1	68
63	Tensile and forming properties of auxetic warp-knitted spacer fabrics. Textile Reseach Journal, 2017, 87, 1925-1937.	1.1	41
64	Spacer fabric-based exuding wound dressing – Part II: Comparison with commercial wound dressings. Textile Reseach Journal, 2017, 87, 1481-1493.	1.1	31
65	Finite Element Modeling of Multilayer Orthogonal Auxetic Composites under Low-Velocity Impact. Materials, 2017, 10, 908.	1.3	19
66	Auxetic Textile Materials - A review. Journal of Textile Engineering & Fashion Technology, 2017, 1, .	0.1	15
67	Hollow Three-Dimensional Knitted Structure Reinforced Composites., 2017,, 109-127.		O
68	3D spacer fabric based multifunctional triboelectric nanogenerator with great feasibility for mechanized large-scale production. Nano Energy, 2016, 27, 439-446.	8.2	107
69	A high performance fiber-shaped PEDOT@MnO ₂ //C@Fe ₃ O ₄ asymmetric supercapacitor for wearable electronics. Journal of Materials Chemistry A, 2016, 4, 14877-14883.	5.2	118
70	Polyurethane/Cotton/Carbon Nanotubes Core-Spun Yarn as High Reliability Stretchable Strain Sensor for Human Motion Detection. ACS Applied Materials & Samp; Interfaces, 2016, 8, 24837-24843.	4.0	251
71	An experimental study on vibration isolation performance of weft-knitted spacer fabrics. Textile Reseach Journal, 2016, 86, 2225-2235.	1.1	16
72	High-performance stretchable yarn supercapacitor based on PPy@CNTs@urethane elastic fiber core spun yarn. Nano Energy, 2016, 27, 230-237.	8.2	297

#	Article	IF	Citations
73	Graphene oxide-enhanced sol-gel transition sensitivity and drug release performance of an amphiphilic copolymer-based nanocomposite. Scientific Reports, 2016, 6, 31815.	1.6	22
74	Generation of Hierarchically Ordered Structures on a Polymer Film by Electrohydrodynamic Structure Formation. ACS Applied Materials & Structure Formation. ACS Applied Materials & Structure Formation.	4.0	18
75	Auxetic composites made of 3D textile structure and polyurethane foam. Physica Status Solidi (B): Basic Research, 2016, 253, 1331-1341.	0.7	44
76	A novel plied yarn structure with negative Poisson's ratio. Journal of the Textile Institute, 2016, 107, 578-588.	1.0	53
77	Compression behavior and energy absorption of carbon fiber reinforced composite sandwich panels made of three-dimensional honeycomb grid cores. Extreme Mechanics Letters, 2016, 7, 114-120.	2.0	41
78	Compressive mechanics of warp-knitted spacer fabrics. Part I: a constitutive model. Textile Reseach Journal, 2016, 86, 3-12.	1.1	24
79	Auxetic composite made with multilayer orthogonal structural reinforcement. Composite Structures, 2016, 135, 23-29.	3.1	77
80	Study of heat-setting treatment for biomedical polydioxanone stents. Journal of Industrial Textiles, 2016, 46, 75-87.	1.1	3
81	Auxetic Textile Materials - A review. Journal of Textile Engineering & Fashion Technology, 2016, 1, .	0.1	20
82	A novel 3D composite structure with tunable Poisson's ratio and stiffness. Physica Status Solidi (B): Basic Research, 2015, 252, 1565-1574.	0.7	10
83	Magnetic-Assisted, Self-Healable, Yarn-Based Supercapacitor. ACS Nano, 2015, 9, 6242-6251.	7.3	291
84	Development of weft-knitted spacer fabrics with negative stiffness effect in a special range of compression displacement. Textile Reseach Journal, 2015, 85, 1720-1731.	1.1	17
85	Structural and mechanistic understanding of an active and durable graphene carbocatalyst for reduction of 4-nitrophenol at room temperature. Nano Research, 2015, 8, 3992-4006.	5.8	73
86	Compressive mechanics of warp-knitted spacer fabrics. Part II: a dynamic model. Textile Reseach Journal, 2015, 85, 2020-2029.	1.1	15
87	Finite element analysis of compression behaviour of 3D spacer fabric structure. International Journal of Mechanical Sciences, 2015, 94-95, 244-259.	3.6	41
88	Ecological risk assessment of bisphenol A in surface waters of China based on both traditional and reproductive endpoints. Chemosphere, 2015, 139, 133-137.	4.2	32
89	Synthesis and stabilization of metal nanocatalysts for reduction reactions – a review. Journal of Materials Chemistry A, 2015, 3, 11157-11182.	5.2	264
90	A theoretical analysis of deformation behavior of an innovative 3D auxetic textile structure. Journal of the Textile Institute, 2015, 106, 101-109.	1.0	18

#	Article	IF	Citations
91	From Industrially Weavable and Knittable Highly Conductive Yarns to Large Wearable Energy Storage Textiles. ACS Nano, 2015, 9, 4766-4775.	7.3	411
92	A pH-mediated enhancement of the graphene carbocatalyst activity for the reduction of 4-nitrophenol. Chemical Communications, 2015, 51, 16699-16702.	2.2	45
93	Vibration isolation behaviour of 3D polymeric knitted spacer fabrics under harmonic vibration testing conditions. Polymer Testing, 2015, 47, 120-129.	2.3	20
94	A novel impact hardening polymer with negative Poisson's ratio for impact protection. Materials Today Communications, 2015, 5, 50-59.	0.9	12
95	Metal-free graphene-based catalyst—Insight into the catalytic activity: A short review. Applied Catalysis A: General, 2015, 492, 1-9.	2.2	123
96	Numerical analysis of deformation behavior of a 3D textile structure with negative Poisson's ratio under compression. Textile Reseach Journal, 2015, 85, 548-557.	1.1	19
97	A finite element analysis of an auxetic warp-knitted spacer fabric structure. Textile Reseach Journal, 2015, 85, 404-415.	1.1	23
98	An Experimental Study of Compression Behavior of Warp-knitted Spacer Fabric. Journal of Engineered Fibers and Fabrics, 2014, 9, 155892501400900.	0.5	4
99	Deformation behaviors of three-dimensional auxetic spacer fabrics. Textile Reseach Journal, 2014, 84, 1361-1372.	1.1	41
100	Auxetic materials and their potential applications in textiles. Textile Reseach Journal, 2014, 84, 1600-1611.	1.1	180
101	3D auxetic warp-knitted spacer fabrics. Physica Status Solidi (B): Basic Research, 2014, 251, 281-288.	0.7	89
102	Aqueous and Airâ€Compatible Fabrication of Highâ€Performance Conductive Textiles. Chemistry - an Asian Journal, 2014, 9, 2170-2177.	1.7	36
103	Tailoring structure of inclusion with strain-induced closure to reduce Poisson's ratio of composite materials. Journal of Applied Physics, 2014, 115, 224903.	1.1	3
104	Biodegradable weftâ€knitted intestinal stents: Fabrication and physical changes investigation <i>in vitro</i> degradation. Journal of Biomedical Materials Research - Part A, 2014, 102, 982-990.	2.1	43
105	Protective properties of warp-knitted spacer fabrics under impact in hemispherical form. Part I: Impact behavior analysis of a typical spacer fabric. Textile Reseach Journal, 2014, 84, 422-434.	1.1	57
106	Protective properties of warp-knitted spacer fabrics under impact in hemispherical form. Part II: effects of structural parameters and lamination. Textile Reseach Journal, 2014, 84, 312-322.	1.1	42
107	Functionalization of silicon carbide nanotube by dichlorocarbene: A density functional theory study. Physica E: Low-Dimensional Systems and Nanostructures, 2014, 56, 377-385.	1.3	7
108	Multifunctional organically modified graphene with super-hydrophobicity. Nano Research, 2014, 7, 418-433.	5.8	65

#	Article	IF	CITATIONS
109	Numerical analysis of composite structure with in-plane isotropic negative Poisson's ratio: Effects of materials properties and geometry features of inclusions. Composites Part B: Engineering, 2014, 58, 152-159.	5.9	25
110	Mechanical behaviors of carbon fiber composite sandwich columns with three dimensional honeycomb cores under in-plane compression. Composites Part B: Engineering, 2014, 60, 350-358.	5.9	57
111	Ultrafast 2â€Dimensional Image Monitoring and Arrayâ€Based Passive Cavitation Detection for Ultrasound Contrast Agent Destruction in a Variably Sized Region. Journal of Ultrasound in Medicine, 2014, 33, 1957-1970.	0.8	4
112	PAM/graphene/Ag ternary hydrogel: synthesis, characterization and catalytic application. Journal of Materials Chemistry A, 2014, 2, 11319-11333.	5.2	94
113	Beryllium decorated armchair boron nitride nanoribbon: A new planar tetracoordinate nitride containing system with enhanced conductivity. Chemical Physics Letters, 2014, 608, 277-283.	1.2	4
114	Organic Liquids-Responsive \hat{I}^2 -Cyclodextrin-Functionalized Graphene-Based Fluorescence Probe: Label-Free Selective Detection of Tetrahydrofuran. Molecules, 2014, 19, 7459-7479.	1.7	39
115	A composite material with Poisson's ratio tunable from positive to negative values: an experimental and numerical study. Journal of Materials Science, 2013, 48, 8493-8500.	1.7	28
116	An elastic analysis of a honeycomb structure with negative Poisson's ratio. Smart Materials and Structures, 2013, 22, 084006.	1.8	18
117	Integrated Design for Manufacturing of Braided Preforms for Advanced Composites Part I: 2D Braiding. Applied Composite Materials, 2013, 20, 1007-1023.	1.3	11
118	Highly Efficient Grapheneâ€Based Ternary Composite Catalyst with Polydopamine Layer and Copper Nanoparticles. ChemPlusChem, 2013, 78, 1483-1490.	1.3	45
119	Study of an auxetic structure made of tubes and corrugated sheets. Physica Status Solidi (B): Basic Research, 2013, 250, 1996-2001.	0.7	19
120	A 5-fluorouracil-loaded polydioxanone weft-knitted stent for the treatment of colorectal cancer. Biomaterials, 2013, 34, 9451-9461.	5.7	59
121	Analysis and prediction of elastic constants of co-woven-knitted fabric (CWKF) composite. Journal of the Textile Institute, 2013, 104, 278-288.	1.0	4
122	Integrated Design For Manufacturing of Braided Preforms For Advanced Composites Part II: 3D Braiding. Applied Composite Materials, 2013, 20, 1065-1075.	1.3	8
123	Microâ€gels for impact protection. Journal of Applied Polymer Science, 2013, 130, 2345-2351.	1.3	14
124	Mechanical properties of biaxial weft-knitted flax composites. Materials & Design, 2013, 46, 264-269.	5.1	43
125	Glutaraldehyde–chitosan and poly (vinyl alcohol) blends, and fluorescence of their nano-silica composite films. Carbohydrate Polymers, 2013, 91, 305-313.	5.1	127
126	Thermal Comfort Evaluation of Equestrian Body Protectors Using a Sweating Manikin. Clothing and Textiles Research Journal, 2013, 31, 231-243.	2.2	12

#	Article	IF	Citations
127	Innovative three-dimensional fabric structure with negative Poisson's ratio for composite reinforcement. Textile Reseach Journal, 2013, 83, 543-550.	1.1	78
128	A finite element analysis of a 3D auxetic textile structure for composite reinforcement. Smart Materials and Structures, 2013, 22, 084005.	1.8	51
129	Polydioxanone weft-knitted intestinal stents: fabrication and mechanics optimization. Textile Reseach Journal, 2013, 83, 2129-2141.	1.1	14
130	Design and Compression Deformation Analysis of an Innovational Structure with Auxetic Effect. Applied Mechanics and Materials, 2013, 427-429, 99-103.	0.2	1
131	Finite element analyses of tensile impact behaviors of co-woven-knitted composite from unit-cell approach. Journal of the Textile Institute, 2013, 104, 446-459.	1.0	7
132	The use of a polytrimethylene terephthalate/polyester bi-component filament for the development of seamless garments. Textile Reseach Journal, 2013, 83, 1283-1296.	1.1	15
133	A study of spherical compression properties of knitted spacer fabrics part II: comparison with experiments. Textile Reseach Journal, 2013, 83, 794-799.	1.1	29
134	Study on the Relationship between UV Protectionand Knitted Fabric Structure. Journal of Textile Engineering, 2013, 59, 71-74.	0.5	13
135	The Relationship between Ultraviolet Protection Factor and Fibre Content. Journal of Textile Engineering, 2013, 59, 83-86.	0.5	7
136	Ballistic impact damage of biaxial multilayer knitted composite. Journal of Composite Materials, 2012, 46, 527-547.	1.2	16
137	A study of spherical compression properties of knitted spacer fabrics Part I: Theoretical analysis. Textile Reseach Journal, 2012, 82, 1569-1578.	1.1	35
138	Compression behavior of warp-knitted spacer fabrics for cushioning applications. Textile Reseach Journal, 2012, 82, 11-20.	1.1	108
139	Impact Protective Clothing in Sport: Areas of Application and Level of Utilization. Research Journal of Textile and Apparel, 2012, 16, 18-28.	0.6	12
140	Impact compressive behavior of warp-knitted spacer fabrics for protective applications. Textile Reseach Journal, 2012, 82, 773-788.	1.1	108
141	A novel concept to develop composite structures with isotropic negative Poisson's ratio: Effects of random inclusions. Composites Science and Technology, 2012, 72, 1848-1854.	3.8	58
142	Three-point bending fatigue behavior of 3D angle-interlock woven composite. Journal of Composite Materials, 2012, 46, 883-894.	1.2	26
143	Effect of temperature on bending properties and failure mechanism of three-dimensional braided composite. Materials & Design, 2012, 41, 167-170.	5.1	64
144	A study of computational mechanics of 3D spacer fabric: factors affecting its compression deformation. Journal of Materials Science, 2012, 47, 3989-3999.	1.7	36

#	Article	IF	Citations
145	Tensile behaviors of co-woven-knitted fabric reinforced composites under various strain rates. Journal of Composite Materials, 2011, 45, 2495-2506.	1.2	16
146	Compression property and air permeability of weftâ€knitted spacer fabrics. Journal of the Textile Institute, 2011, 102, 366-372.	1.0	88
147	Upright Standing Graphene Formation on Substrates. Journal of the American Chemical Society, 2011, 133, 16072-16079.	6.6	47
148	Boron and Nitrogen Doping Induced Half-Metallicity in Zigzag Triwing Graphene Nanoribbons. Journal of Physical Chemistry C, 2011, 115, 6195-6199.	1.5	60
149	Permeability anisotropy of flax nonwoven mats in vacuumâ€assisted resin transfer molding. Journal of the Textile Institute, 2011, 102, 612-620.	1.0	18
150	Frequency features of co-woven-knitted fabric (CWKF) composite under tension at various strain rates. Composites Part A: Applied Science and Manufacturing, 2011, 42, 446-452.	3.8	24
151	Formation of Carbon Clusters in the Initial Stage of Chemical Vapor Deposition Graphene Growth on Ni(111) Surface. Journal of Physical Chemistry C, 2011, 115, 17695-17703.	1.5	119
152	Threshold Barrier of Carbon Nanotube Growth. Physical Review Letters, 2011, 107, 156101.	2.9	33
153	Formation and electronic properties of hydrogenated few layer graphene. Nanotechnology, 2011, 22, 185202.	1.3	74
154	Stretchable Conductors with Ultrahigh Tensile Strain and Stable Metallic Conductance Enabled by Prestrained Polyelectrolyte Nanoplatforms. Advanced Materials, 2011, 23, 3090-3094.	11.1	196
155	Geometrical analysis of coâ€woven knitted preform for composite reinforcement. Journal of the Textile Institute, 2011, 102, 405-418.	1.0	17
156	Tailoring band gap in GaN sheet by chemical modification and electric field: $\langle i \rangle$ Ab initio $\langle i \rangle$ calculations. Applied Physics Letters, 2011, 98, .	1.5	105
157	Energy absorption of 3D orthogonal woven fabric under ballistic penetration of hemispherical-cylindrical projectile. Journal of the Textile Institute, 2011, 102, 875-889.	1.0	25
158	Constitutive equations of basalt filament tows under quasi-static and high strain rate tension. Materials Science & Departure and Processing, 2010, 527, 3245-3252.	2.6	49
159	A simplified microstructure model of bi-axial warp-knitted composite for ballistic impact simulation. Composites Part B: Engineering, 2010, 41, 337-353.	5.9	36
160	A Comparative Study of the Impact Response of 3D Textile Composites and Aluminum Plates. Journal of Composite Materials, 2010, 44, 593-619.	1.2	7
161	Mechanical Properties of Composite Materials Made of 3D Stitched Woven-knitted Preforms. Journal of Composite Materials, 2010, 44, 1753-1767.	1.2	30
162	Dynamic Responses of 3-D Multi-structured Knitted Composite T-beam under Transverse Impact. Journal of Composite Materials, 2010, 44, 157-180.	1.2	8

#	Article	IF	Citations
163	Controlling Cross Section of Carbon Nanotubes via Selective Hydrogenation. Journal of Physical Chemistry C, 2010, 114, 11753-11757.	1.5	7
164	Responses of 3D biaxial spacer weft-knitted composite circular plate under impact loading. Part I: unit-cell and elasto-plastic constitutive model. Journal of the Textile Institute, 2010, 101, 28-34.	1.0	8
165	Responses of 3D biaxial spacer weft-knitted composite circular plate under impact loading. Part II: impact tests and FEM calculation. Journal of the Textile Institute, 2010, 101, 35-45.	1.0	14
166	Dynamic Behavior of 3D Biaxial Spacer Weft-Knitted Composite T-Beam Under Transverse Impact. Mechanics of Advanced Materials and Structures, 2009, 16, 356-370.	1.5	14
167	Mechanical properties of PVC coated bi-axial warp knitted fabric with and without initial cracks under multi-axial tensile loads. Composite Structures, 2009, 89, 536-542.	3.1	40
168	X-ray diffraction study of bamboo fibers treated with NaOH. Fibers and Polymers, 2008, 9, 735-739.	1.1	228
169	Development of the Warp Knitted Spacer Fabrics for Cushion Applications. Journal of Industrial Textiles, 2008, 37, 213-223.	1.1	82
170	Application of warp-knitted spacer fabrics in car seats. Journal of the Textile Institute, 2007, 98, 337-344.	1.0	82
171	Geometrical and Dimensional Properties of Plain Knitted Fabrics Made from Glass Fiber Yarns for Composite Reinforcement. Journal of Industrial Textiles, 2007, 37, 139-149.	1.1	6
172	Compressive behavior of multi-axial multi-layer warp knitted (MMWK) fabric composite at various strain rates. Composite Structures, 2007, 78, 84-90.	3.1	48
173	Compressive behavior of biaxial spacer weft knitted fabric reinforced composite at various strain rates. Polymer Composites, 2007, 28, 224-232.	2.3	16
174	Radial Compressive Properties of the Biodegradable Braided Regeneration Tubes for Peripheral Nerve Repair. Journal of Industrial Textiles, 2006, 36, 35-46.	1.1	11
175	Tensile Impact Behavior of Multiaxial Multilayer Warp Knitted (MMWK) Fabric Reinforced Composites. Journal of Reinforced Plastics and Composites, 2006, 25, 1305-1315.	1.6	13
176	Dynamic Response of 3D Biaxial Spacer Weft-knitted Composite under Transverse Impact. Journal of Reinforced Plastics and Composites, 2006, 25, 1629-1641.	1.6	22
177	An Experimental Investigation on the Properties of the Spacer Knitted Fabrics for Pressure Reduction. Research Journal of Textile and Apparel, 2005, 9, 52-57.	0.6	16
178	An Improved MWK Structure for Composite Reinforcement. Textile Reseach Journal, 2005, 75, 342-345.	1,1	10
179	An Experimental and Numerical Study on the Impact Energy Absorption Characteristics of the Multiaxial Warp Knitted (MWK) Reinforced Composites. Journal of Composite Materials, 2005, 39, 525-542.	1.2	23
180	Fibrous Reinforcements for Composite Materials: Producing and Modelling. Materials Science Forum, 2004, 455-456, 787-791.	0.3	1

#	Article	IF	CITATIONS
181	Theoretical Analysis of Load-Extension Properties of Plain Weft Knits Made from High Performance Yarns for Composite Reinforcement. Textile Reseach Journal, 2002, 72, 991-996.	1.1	40
182	Sustainable profiled poly(lactic acid) multifilaments with high moisture management performance for textiles. Textile Reseach Journal, 0, , 004051752211026.	1.1	1