
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4836455/publications.pdf Version: 2024-02-01

FENCLU

#	Article	IF	CITATIONS
1	Nuclear cGAS: sequestration and beyond. Protein and Cell, 2022, 13, 90-101.	11.0	27
2	Adipocyte-derived PGE2 is required for intermittent fasting–induced Treg proliferation and improvement of insulin sensitivity. JCI Insight, 2022, 7, .	5.0	13
3	Lipid metabolism and endometrial receptivity. Human Reproduction Update, 2022, 28, 858-889.	10.8	26
4	The Yin and Yang function of microRNAs in insulin signalling and cancer. RNA Biology, 2021, 18, 24-32.	3.1	7
5	Adiponectin Alleviates Diet-Induced Inflammation in the Liver by Suppressing MCP-1 Expression and Macrophage Infiltration. Diabetes, 2021, 70, 1303-1316.	0.6	22
6	The miR-182-5p/FGF21/acetylcholine axis mediates the crosstalk between adipocytes and macrophages to promote beige fat thermogenesis. JCI Insight, 2021, 6, .	5.0	19
7	Rheb1 promotes glucose-stimulated insulin secretion in human and mouse β-cells by upregulating GLUT expression. Metabolism: Clinical and Experimental, 2021, 123, 154863.	3.4	10
8	DsbA-L deficiency in T cells promotes diet-induced thermogenesis through suppressing IFN-Î ³ production. Nature Communications, 2021, 12, 326.	12.8	12
9	Adiponectin restrains ILC2 activation by AMPK-mediated feedback inhibition of IL-33 signaling. Journal of Experimental Medicine, 2021, 218, .	8.5	35
10	T cell metabolism in obesity and beyond: comments on â€~DsbA-L deficiency in T cells promotes diet-induced thermogenesis through suppressing IFN-γ production'. Journal of Molecular Cell Biology, 2021, 13, 389-391.	3.3	1
11	cGAS‒STING signaling and function in metabolism and kidney diseases. Journal of Molecular Cell Biology, 2021, 13, 728-738.	3.3	42
12	LRG1 is an adipokine that mediates obesity-induced hepatosteatosis and insulin resistance. Journal of Clinical Investigation, 2021, 131, .	8.2	30
13	Recent Advances in Adipose Tissue Dysfunction and Its Role in the Pathogenesis of Non-Alcoholic Fatty Liver Disease. Cells, 2021, 10, 3300.	4.1	25
14	The De-, Re-, and trans-differentiation of β-cells: Regulation and function. Seminars in Cell and Developmental Biology, 2020, 103, 68-75.	5.0	18
15	STING expression in monocyte-derived macrophages is associated with the progression of liver inflammation and fibrosis in patients with nonalcoholic fatty liver disease. Laboratory Investigation, 2020, 100, 542-552.	3.7	64
16	DsbA-L mediated renal tubulointerstitial fibrosis in UUO mice. Nature Communications, 2020, 11, 4467.	12.8	51
17	Cathelicidin aggravates myocardial ischemia/reperfusion injury via activating TLR4 signaling and P2X7R/NLRP3 inflammasome. Journal of Molecular and Cellular Cardiology, 2020, 139, 75-86.	1.9	26
18	Estrogen receptor-α expressing neurons in the ventrolateral VMH regulate glucose balance. Nature Communications, 2020, 11, 2165.	12.8	48

#	Article	IF	CITATIONS
19	Mitochondrial stress-activated cGAS-STING pathway inhibits thermogenic program and contributes to overnutrition-induced obesity in mice. Communications Biology, 2020, 3, 257.	4.4	50
20	Rheb (Ras Homolog Enriched in Brain 1) Deficiency in Mature Macrophages Prevents Atherosclerosis by Repressing Macrophage Proliferation, Inflammation, and Lipid Uptake. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 1787-1801.	2.4	19
21	Potential Roles of Adiponectin Isoforms in Human Obesity with Delayed Wound Healing. Cells, 2019, 8, 1134.	4.1	13
22	Rheb promotes brown fat thermogenesis by Notch-dependent activation of the PKA signaling pathway. Journal of Molecular Cell Biology, 2019, 11, 781-790.	3.3	6
23	The cGAS-cGAMP-STING Pathway: A Molecular Link Between Immunity and Metabolism. Diabetes, 2019, 68, 1099-1108.	0.6	145
24	Defective Phosphatidylglycerol Remodeling Causes Hepatopathy, Linking Mitochondrial Dysfunction to Hepatosteatosis. Cellular and Molecular Gastroenterology and Hepatology, 2019, 7, 763-781.	4.5	32
25	Disulfide-bond A oxidoreductase-like protein protects against ectopic fat deposition and lipid-related kidney damage in diabetic nephropathy. Kidney International, 2019, 95, 880-895.	5.2	54
26	De-silencing Grb10 contributes to acute ER stress-induced steatosis in mouse liver. Journal of Molecular Endocrinology, 2018, 60, 285-297.	2.5	17
27	Alternative splicing variant of the scaffold protein APPL1 suppresses hepatic adiponectin signaling and function. Journal of Biological Chemistry, 2018, 293, 6064-6074.	3.4	12
28	Regulation, Communication, and Functional Roles of Adipose Tissue-Resident CD4+ T Cells in the Control of Metabolic Homeostasis. Frontiers in Immunology, 2018, 9, 1961.	4.8	34
29	Obesity-Associated miR-199a/214 Cluster Inhibits Adipose Browning via PRDM16–PGC-1α Transcriptional Network. Diabetes, 2018, 67, 2585-2600.	0.6	39
30	Nuclear cGAS suppresses DNA repair and promotes tumorigenesis. Nature, 2018, 563, 131-136.	27.8	412
31	NFATc3 deficiency reduces the classical activation of adipose tissue macrophages. Journal of Molecular Endocrinology, 2018, 61, 79-89.	2.5	17
32	Common and distinct regulation of human and mouse brown and beige adipose tissues: a promising therapeutic target for obesity. Protein and Cell, 2017, 8, 446-454.	11.0	39
33	Hepatic DsbAâ€L protects mice from dietâ€induced hepatosteatosis and insulin resistance. FASEB Journal, 2017, 31, 2314-2326.	0.5	21
34	Rheb Inhibits Beiging of White Adipose Tissue via PDE4D5-Dependent Downregulation of the cAMP-PKA Signaling Pathway. Diabetes, 2017, 66, 1198-1213.	0.6	39
35	DsbA-L prevents obesity-induced inflammation and insulin resistance by suppressing the mtDNA release-activated cGAS-cGAMP-STINC pathway. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 12196-12201.	7.1	185
36	Regulation of energy metabolism and maintenance of metabolic homeostasis: the adiponectin story after 20 years. Journal of Molecular Cell Biology, 2016, 8, 91-92.	3.3	7

#	Article	IF	CITATIONS
37	Hypothalamic roles of mTOR complex I: integration of nutrient and hormone signals to regulate energy homeostasis. American Journal of Physiology - Endocrinology and Metabolism, 2016, 310, E994-E1002.	3.5	54
38	Recent Advances in Adipose mTOR Signaling and Function: Therapeutic Prospects. Trends in Pharmacological Sciences, 2016, 37, 303-317.	8.7	112
39	miR-30 Promotes Thermogenesis and the Development of Beige Fat by Targeting RIP140. Diabetes, 2015, 64, 2056-2068.	0.6	103
40	Endoplasmic Reticulum (ER) Localization Is Critical for DsbA-L Protein to Suppress ER Stress and Adiponectin Down-regulation in Adipocytes. Journal of Biological Chemistry, 2015, 290, 10143-10148.	3.4	36
41	Glucocorticoids Transcriptionally Regulate miR-27b Expression Promoting Body Fat Accumulation Via Suppressing the Browning of White Adipose Tissue. Diabetes, 2015, 64, 393-404.	0.6	100
42	Feedback regulation of mTORC1 by Grb10 in metabolism and beyond. Cell Cycle, 2014, 13, 2643-2644.	2.6	13
43	Targeting tissue-specific metabolic signaling pathways in aging: the promise and limitations. Protein and Cell, 2014, 5, 21-35.	11.0	32
44	Tissueâ€specific insulin signaling in the regulation of metabolism and aging. IUBMB Life, 2014, 66, 485-495.	3.4	70
45	APPL1 Potentiates Insulin Sensitivity by Facilitating the Binding of IRS1/2 to the Insulin Receptor. Cell Reports, 2014, 7, 1227-1238.	6.4	107
46	Grb10 Promotes Lipolysis and Thermogenesis by Phosphorylation-Dependent Feedback Inhibition of mTORC1. Cell Metabolism, 2014, 19, 967-980.	16.2	106
47	Regulation of adiponectin multimerization, signaling and function. Best Practice and Research in Clinical Endocrinology and Metabolism, 2014, 28, 25-31.	4.7	115
48	Ursolic Acid Inhibits Leucine-Stimulated mTORC1 Signaling by Suppressing mTOR Localization to Lysosome. PLoS ONE, 2014, 9, e95393.	2.5	12
49	Identification of miR-106b-93 as a negative regulator of brown adipocyte differentiation. Biochemical and Biophysical Research Communications, 2013, 438, 575-580.	2.1	53
50	Adiponectin is critical in determining susceptibility to depressive behaviors and has antidepressant-like activity. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 12248-12253.	7.1	145
51	Fat-Specific DsbA-L Overexpression Promotes Adiponectin Multimerization and Protects Mice From Diet-Induced Obesity and Insulin Resistance. Diabetes, 2012, 61, 2776-2786.	0.6	67
52	Proliferative and Antiapoptotic Signaling Stimulated by Nuclear-Localized PDK1 Results in Oncogenesis. Science Signaling, 2012, 5, ra80.	3.6	29
53	Disruption of Growth Factor Receptor–Binding Protein 10 in the Pancreas Enhances β-Cell Proliferation and Protects Mice From Streptozotocin-Induced β-Cell Apoptosis. Diabetes, 2012, 61, 3189-3198.	0.6	40
54	Up- and down-regulation of adiponectin expression and multimerization: Mechanisms and therapeutic implication. Biochimie, 2012, 94, 2126-2130.	2.6	49

#	Article	IF	CITATIONS
55	Mitochondrial stress: A bridge between mitochondrial dysfunction and metabolic diseases?. Cellular Signalling, 2011, 23, 1528-1533.	3.6	95
56	Resveratrol inhibits mTOR signaling by targeting DEPTOR. Communicative and Integrative Biology, 2011, 4, 382-384.	1.4	19
57	Up-regulation of Adiponectin by Resveratrol. Journal of Biological Chemistry, 2011, 286, 60-66.	3.4	83
58	APPL1 mediates adiponectin-stimulated p38 MAPK activation by scaffolding the TAK1-MKK3-p38 MAPK pathway. American Journal of Physiology - Endocrinology and Metabolism, 2011, 300, E103-E110.	3.5	80
59	Resveratrol Inhibits mTOR Signaling by Promoting the Interaction between mTOR and DEPTOR. Journal of Biological Chemistry, 2010, 285, 36387-36394.	3.4	154
60	DsbA-L Alleviates Endoplasmic Reticulum Stress–Induced Adiponectin Downregulation. Diabetes, 2010, 59, 2809-2816.	0.6	105
61	Autophagy. Autophagy, 2010, 6, 1196-1197.	9.1	54
62	Adiponectin Activates AMP-activated Protein Kinase in Muscle Cells via APPL1/LKB1-dependent and Phospholipase C/Ca2+/Ca2+/Calmodulin-dependent Protein Kinase Kinase-dependent Pathways. Journal of Biological Chemistry, 2009, 284, 22426-22435.	3.4	178
63	Yin-Yang Regulation of Adiponectin Signaling by APPL Isoforms in Muscle Cells. Journal of Biological Chemistry, 2009, 284, 31608-31615.	3.4	126
64	Protein Kinase C Î, (PKCÎ)-dependent Phosphorylation of PDK1 at Ser504 and Ser532 Contributes to Palmitate-induced Insulin Resistance. Journal of Biological Chemistry, 2009, 284, 2038-2044.	3.4	37
65	A disulfide-bond A oxidoreductase-like protein (DsbA-L) regulates adiponectin multimerization. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 18302-18307.	7.1	188
66	Peripheral Disruption of the Grb10 Gene Enhances Insulin Signaling and Sensitivity In Vivo. Molecular and Cellular Biology, 2007, 27, 6497-6505.	2.3	125
67	Adiponectin Sensitizes Insulin Signaling by Reducing p70 S6 Kinase-mediated Serine Phosphorylation of IRS-1. Journal of Biological Chemistry, 2007, 282, 7991-7996.	3.4	179
68	APPL1 binds to adiponectin receptors and mediates adiponectin signalling and function. Nature Cell Biology, 2006, 8, 516-523.	10.3	581
69	Grb10 mediates insulin-stimulated degradation of the insulin receptor: a mechanism of negative regulation. American Journal of Physiology - Endocrinology and Metabolism, 2006, 290, E1262-E1266.	3.5	51
70	Fine Tuning PDK1 Activity by Phosphorylation at Ser163. Journal of Biological Chemistry, 2006, 281, 21588-21593.	3.4	23
71	Phosphorylation of Grb10 by Mitogen-Activated Protein Kinase:Â Identification of Ser150and Ser476of Human Grb10ζ as Major Phosphorylation Sitesâ€. Biochemistry, 2005, 44, 8890-8897.	2.5	14
72	Grb10: more than a simple adaptor protein. Frontiers in Bioscience - Landmark, 2004, 9, 387.	3.0	57

#	Article	IF	CITATIONS
73	Roles of PDK-1 and PKN in regulating cell migration and cortical actin formation of PTEN-knockout cells. Oncogene, 2004, 23, 9348-9358.	5.9	35
74	The role of insulin and insulin-like growth factor-I in mammalian ageing. Best Practice and Research in Clinical Endocrinology and Metabolism, 2004, 18, 393-406.	4.7	57
75	Mouse 3-Phosphoinositide-dependent Protein Kinase-1 Undergoes Dimerization and trans-Phosphorylation in the Activation Loop. Journal of Biological Chemistry, 2003, 278, 42913-42919.	3.4	61
76	Grb10 Inhibits Insulin-stimulated Insulin Receptor Substrate (IRS)-Phosphatidylinositol 3-Kinase/Akt Signaling Pathway by Disrupting the Association of IRS-1/IRS-2 with the Insulin Receptor. Journal of Biological Chemistry, 2003, 278, 8460-8467.	3.4	106
77	Substitution of the Autophosphorylation Site Thr516with a Negatively Charged Residue Confers Constitutive Activity to Mouse 3-Phosphoinositide-dependent Protein Kinase-1 in Cells. Journal of Biological Chemistry, 2002, 277, 16632-16638.	3.4	40
78	Insulin Stimulates Increased Catalytic Activity of Phosphoinositide-Dependent Kinase-1 by a Phosphorylation-Dependent Mechanism. Biochemistry, 2001, 40, 11851-11859.	2.5	33
79	Mechanism of Phosphorylation of Protein Kinase B/Akt by a Constitutively Active 3-Phosphoinositide-dependent Protein Kinase-1. Journal of Biological Chemistry, 2000, 275, 40400-40406.	3.4	116
80	Primary Structure, Tissue Distribution, and Expression of Mouse Phosphoinositide-dependent Protein Kinase-1, a Protein Kinase That Phosphorylates and Activates Protein Kinase Cζ. Journal of Biological Chemistry, 1999, 274, 8117-8122.	3.4	86
81	Site-Directed Mutagenesis and Yeast Two-Hybrid Studies of the Insulin and Insulin-Like Growth Factor-1 Receptors: The Src Homology-2 Domain-Containing Protein hGrb10 Binds to the Autophosphorylated Tyrosine Residues in the Kinase Domain of the Insulin Receptor. Molecular Endocrinology, 1997, 11, 1757-1765.	3.7	43
82	Cloning, Chromosome Localization, Expression, and Characterization of an Src Homology 2 and Pleckstrin Homology Domain-containing Insulin Receptor Binding Protein hGrb10Î ³ . Journal of Biological Chemistry, 1997, 272, 29104-29112.	3.4	69