Omar Azzaroni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4836398/publications.pdf

Version: 2024-02-01

172 papers 8,891 citations

³⁸⁷⁴² 50 h-index

86 g-index

178 all docs

 $\begin{array}{c} 178 \\ \\ \text{docs citations} \end{array}$

178 times ranked

7649 citing authors

#	Article	IF	CITATIONS
1	Highly sensitive urine glucose detection with graphene field-effect transistors functionalized with electropolymerized nanofilms. Sensors & Diagnostics, 2022, 1, 139-148.	3.8	21
2	Post-synthetic modification and chemical modulation of the ZIF-8 MOF using 3-mercaptopropionic acid (MPA): a multi-technique study on thermodynamic and kinetic aspects. Molecular Systems Design and Engineering, 2022, 7, 101-111.	3.4	5
3	Biofunctionalization of Grapheneâ€Based FET Sensors through Heterobifunctional Nanoscaffolds: Technology Validation toward Rapid COVIDâ€19 Diagnostics and Monitoring. Advanced Materials Interfaces, 2022, 9, 2102526.	3.7	26
4	Impact of Chemical Primers on the Growth, Structure, and Functional Properties of ZIF-8 Films. Journal of Physical Chemistry C, 2022, 126, 6724-6735.	3.1	3
5	Mass and charge transport in highly mesostructured polyelectrolyte/electroactive-surfactant multilayer films. Journal of Colloid and Interface Science, 2021, 581, 595-607.	9.4	8
6	Nanoarchitectonics of metal organic frameworks and PEDOT layer-by-layer electrodes for boosting oxygen reduction reaction. Materials Advances, 2021, 2, 7731-7740.	5.4	8
7	Enzymes hosted in redox-active ionically cross-linked polyelectrolyte networks enable more efficient biofuel cells. Soft Matter, 2021, 17, 5240-5247.	2.7	10
8	Borate-driven ionic rectifiers based on sugar-bearing single nanochannels. Nanoscale, 2021, 13, 11232-11241.	5.6	11
9	Nanofluidic osmotic power generators – advanced nanoporous membranes and nanochannels for blue energy harvesting. Chemical Science, 2021, 12, 12874-12910.	7.4	60
10	PEDOT:Tosylateâ€Polyamineâ€Based Organic Electrochemical Transistors for Highâ€Performance Bioelectronics. Advanced Electronic Materials, 2021, 7, 2100059.	5.1	25
11	Functionalization Strategies of PEDOT and PEDOT:PSS Films for Organic Bioelectronics Applications. Chemosensors, 2021, 9, 212.	3.6	33
12	Surface Engineering of Graphene through Heterobifunctional Supramolecular-Covalent Scaffolds for Rapid COVID-19 Biomarker Detection. ACS Applied Materials & Interfaces, 2021, 13, 43696-43707.	8.0	13
13	PEDOT-Based Stackable Paper Electrodes for Metal-Free Supercapacitors. ACS Applied Energy Materials, 2021, 4, 9283-9293.	5.1	11
14	Direct detection of human adenovirus or SARS-CoV-2 with ability to inform infectivity using DNA aptamer-nanopore sensors. Science Advances, 2021, 7, eabh2848.	10.3	87
15	Biomimetic solid-state nanochannels for chemical and biological sensing applications. TrAC - Trends in Analytical Chemistry, 2021, 144, 116425.	11.4	47
16	Reactivity Ratios and Surface Properties of Confined and Bulk ATRP Copolymerization of Butyl Methacrylate and 2-Hydroxyethyl Acrylate. ACS Applied Polymer Materials, 2021, 3, 640-650.	4.4	9
17	Mesoporous thin films on graphene FETs: nanofiltered, amplified and extended field-effect sensing. Nanoscale, 2021, 13, 19098-19108.	5.6	9
18	Introduction to celebrating Latin American talent in chemistry. RSC Advances, 2021, 11, 40216-40219.	3.6	1

#	Article	IF	CITATIONS
19	Acetylcholine biosensor based on the electrochemical functionalization of graphene field-effect transistors. Biosensors and Bioelectronics, 2020, 148, 111796.	10.1	99
20	MOF@PEDOT Composite Films for Impedimetric Pesticide Sensors. Global Challenges, 2020, 4, 1900076.	3.6	17
21	A study of the complex interaction between poly allylamine hydrochloride and negatively charged poly(<i>N</i> -isopropylacrylamide- <i>co</i> -methacrylic acid) microgels. Soft Matter, 2020, 16, 881-890.	2.7	16
22	Insulin Delivery from Glucoseâ€Responsive, Selfâ€Assembled, Polyamine Nanoparticles: Smart "Senseâ€andâ€Treat―Nanocarriers Made Easy. Chemistry - A European Journal, 2020, 26, 2456-2463.	3.3	18
23	PEDOT-polyamine composite films for bioelectrochemical platforms - flexible and easy to derivatize. Materials Science and Engineering C, 2020, 109, 110575.	7.3	15
24	Growth of ZIFâ€8 MOF Films with Tunable Porosity by using Poly (1â€vinylimidazole) Brushes as 3D Primers. Chemistry - A European Journal, 2020, 26, 12388-12396.	3.3	11
25	Shelter for Biologically Relevant Molecules: Photoprotection and Enhanced Thermal Stability of Folic Acid Loaded in a ZIF-8 MOF Porous Host. Industrial & Engineering Chemistry Research, 2020, 59, 22155-22162.	3.7	3
26	High-sensitivity detection of dopamine by biomimetic nanofluidic diodes derivatized with poly(3-aminobenzylamine). Nanoscale, 2020, 12, 18390-18399.	5 . 6	20
27	Self-Assembled Mesoporous Zeolitic Imidazolate Framework-8 (ZIF-8) Nanocrystals Bearing Thiol Groups for Separations Technologies. ACS Applied Nano Materials, 2020, 3, 11266-11273.	5.0	8
28	Flexible conducting platforms based on PEDOT and graphite nanosheets for electrochemical biosensing applications. Applied Surface Science, 2020, 525, 146440.	6.1	18
29	Mesostructured Electroactive Thin Films Through Layerâ€by‣ayer Assembly of Redox Surfactants and Polyelectrolytes. ChemPlusChem, 2020, 85, 1616-1622.	2.8	7
30	Dual Monitoring of Surface Reactions in Real Time by Combined Surface-Plasmon Resonance and Field-Effect Transistor Interrogation. Journal of the American Chemical Society, 2020, 142, 11709-11716.	13.7	33
31	Concepts for Designing Tailored Thin Film Surfaces with Potential Biological Applications. , 2020, , .		0
32	Redox-active polyamine-salt aggregates as multistimuli-responsive soft nanoparticles. Physical Chemistry Chemical Physics, 2020, 22, 7440-7450.	2.8	9
33	Self-assembled peptide dendrigraft supraparticles with potential application in pH/enzyme-triggered multistage drug release. Colloids and Surfaces B: Biointerfaces, 2020, 190, 110895.	5.0	25
34	Nanoporous thin films in optical waveguide spectroscopy for chemical analytics. Analytical and Bioanalytical Chemistry, 2020, 412, 3299-3315.	3.7	9
35	Shape matters: Enhanced osmotic energy harvesting in bullet-shaped nanochannels. Nano Energy, 2020, 71, 104612.	16.0	80
36	Following in Situ the Degradation of Mesoporous Silica in Biorelevant Conditions: At Last, a Good Comprehension of the Structure Influence. ACS Applied Materials & Samp; Interfaces, 2020, 12, 13598-13612.	8.0	25

3

#	Article	IF	CITATIONS
37	Electrochemically addressable nanofluidic devices based on PET nanochannels modified with electropolymerized poly- <i>o</i> -aminophenol films. Nanoscale, 2020, 12, 6002-6011.	5.6	22
38	Synthesis and characterization of thermoresponsive ZIF-8@PNIPAm- <i>co</i> h-MAA microgel composites with enhanced performance as an adsorption/release platform. RSC Advances, 2020, 10, 2453-2461.	3.6	20
39	Light-Induced Polymer Response through Thermoplasmonics Transduction in Highly Monodisperse Core-Shell-Brush Nanosystems. Langmuir, 2020, 36, 1965-1974.	3.5	10
40	Polyaniline for Improved Blue Energy Harvesting: Highly Rectifying Nanofluidic Diodes Operating in Hypersaline Conditions via One-Step Functionalization. ACS Applied Materials & Samp; Interfaces, 2020, 12, 28148-28157.	8.0	39
41	Modulation of Hydrophilic/Hydrophobic Character of Porous Environments in Metal–Organic Frameworks via Direct Polymer Capping Probed by NMR Diffusion Measurements. Journal of Physical Chemistry C, 2019, 123, 21076-21082.	3.1	17
42	Redox-Driven Reversible Gating of Solid-State Nanochannels. ACS Applied Materials & Samp; Interfaces, 2019, 11, 30001-30009.	8.0	49
43	Molecular Design of Solidâ€State Nanopores: Fundamental Concepts and Applications. Advanced Materials, 2019, 31, e1901483.	21.0	130
44	Amine-Phosphate Specific Interactions within Nanochannels: Binding Behavior and Nanoconfinement Effects. Journal of Physical Chemistry C, 2019, 123, 28997-29007.	3.1	39
45	Antibacterial Layerâ€byâ€Layer Films of Poly(acrylic acid)–Gentamicin Complexes with a Combined Burst and Sustainable Release of Gentamicin. Advanced Materials Interfaces, 2019, 6, 1901373.	3.7	18
46	The effect of ionic strength and phosphate ions on the construction of redox polyelectrolyte–enzyme self-assemblies. Physical Chemistry Chemical Physics, 2019, 21, 22947-22954.	2.8	10
47	Nanoarchitectonics, now. Molecular Systems Design and Engineering, 2019, 4, 9-10.	3.4	12
48	Continuous assembly of supramolecular polyamine–phosphate networks on surfaces: preparation and permeability properties of nanofilms. Soft Matter, 2019, 15, 1640-1650.	2.7	20
49	Layerâ€byâ€Layer Formation of Polyamineâ€Salt Aggregate/Polyelectrolyte Multilayers. Loading and Controlled Release of Probe Molecules from Selfâ€Assembled Supramolecular Networks. Macromolecular Chemistry and Physics, 2019, 220, 1900094.	2.2	19
50	Reversible Switching of the Dirac Point in Graphene Field-Effect Transistors Functionalized with Responsive Polymer Brushes. Langmuir, 2019, 35, 8038-8044.	3.5	15
51	Controlling dispersion, stability and polymer content on PDEGMA-functionalized core-brush silica colloids. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 574, 12-20.	4.7	15
52	A Patterned Butyl Methacrylate-co-2-Hydroxyethyl Acrylate Copolymer with Softening Surface and Swelling Capacity. Polymers, $2019, 11, 290$.	4.5	5
53	Use of Confinement Effects in Mesoporous Materials to Build Tailored Nanoarchitectures. , 2019, , 331-348.		8
54	Chemical Stability of Mesoporous Oxide Thin Film Electrodes under Electrochemical Cycling: from Dissolution to Stabilization. Langmuir, 2019, 35, 6279-6287.	3.5	31

#	Article	IF	Citations
55	Layer-by-layer integration of conducting polymers and metal organic frameworks onto electrode surfaces: enhancement of the oxygen reduction reaction through electrocatalytic nanoarchitectonics. Molecular Systems Design and Engineering, 2019, 4, 893-900.	3.4	38
56	Polyamine Colloids Crossâ€Linked with Phosphate Ions: Towards Understanding the Solution Phase Behavior. ChemPhysChem, 2019, 20, 1044-1053.	2.1	23
57	Adsorption and Exchangeability of Fibronectin and Serum Albumin Protein Corona on Annealed Polyelectrolyte Multilayers and Their Consequences on Cell Adhesion. Advanced Materials Interfaces, 2019, 6, 1900008.	3.7	23
58	Multitasking polyamine/ferrioxalate nano-sized assemblies: thermo-, photo-, and redox-responsive soft materials made easy. Chemical Communications, 2019, 55, 14653-14656.	4.1	11
59	Shedding Light on the Dark Corners of Metal–Organic Framework Thin Films: Growth and Structural Stability of ZIF-8 Layers Probed by Optical Waveguide Spectroscopy. Journal of Physical Chemistry A, 2019, 123, 1100-1109.	2.5	21
60	Lectin-Recognizable MOF Glyconanoparticles: Supramolecular Glycosylation of ZIF-8 Nanocrystals by Sugar-Based Surfactants. ACS Omega, 2019, 4, 842-848.	3.5	12
61	Practical use of polymer brushes in sustainable energy applications: interfacial nanoarchitectonics for high-efficiency devices. Chemical Society Reviews, 2019, 48, 814-849.	38.1	122
62	Cysteamine-modified ZIF-8 colloidal building blocks: Direct assembly of nanoparticulate MOF films on gold surfaces via thiol chemistry. Materials Today Chemistry, 2018, 8, 29-35.	3.5	18
63	Layer-by-Layer Assembled Microgels Can Combine Conflicting Properties: Switchable Stiffness and Wettability without Affecting Permeability. Langmuir, 2018, 34, 3711-3719.	3.5	16
64	Modulation of Polyelectrolyte Adsorption on Nanoparticles and Nanochannels by Surface Curvature. Journal of Physical Chemistry C, 2018, 122, 6669-6677.	3.1	9
65	Highly-organized stacked multilayers <i>via</i> layer-by-layer assembly of lipid-like surfactants and polyelectrolytes. Stratified supramolecular structures for (bio)electrochemical nanoarchitectonics. Soft Matter, 2018, 14, 1939-1952.	2.7	41
66	Protonâ€Gated Rectification Regimes in Nanofluidic Diodes Switched by Chemical Effectors. Small, 2018, 14, e1703144.	10.0	34
67	Reversible modulation of the redox activity in conducting polymer nanofilms induced by hydrophobic collapse of a surface-grafted polyelectrolyte. Journal of Colloid and Interface Science, 2018, 518, 92-101.	9.4	20
68	Electrochemical nanoarchitectonics through polyaminobenzylamine–dodecyl phosphate complexes: redox activity and mesoscopic organization in self-assembled nanofilms. Physical Chemistry Chemical Physics, 2018, 20, 7570-7578.	2.8	20
69	Pushing the Boundaries of Interfacial Sensitivity in Graphene FET Sensors: Polyelectrolyte Multilayers Strongly Increase the Debye Screening Length. Journal of Physical Chemistry C, 2018, 122, 10181-10188.	3.1	51
70	Highly Sensitive Biosensing with Solid-State Nanopores Displaying Enzymatically Reconfigurable Rectification Properties. Nano Letters, 2018, 18, 3303-3310.	9.1	91
71	Surfactants as mesogenic agents in layer-by-layer assembled polyelectrolyte/surfactant multilayers: nanoarchitectured "soft―thin films displaying a tailored mesostructure. Physical Chemistry Chemical Physics, 2018, 20, 9298-9308.	2.8	14
72	Phosphateâ€Responsive Biomimetic Nanofluidic Diodes Regulated by Polyamine–Phosphate Interactions: Insights into Their Functional Behavior from Theory and Experiment. Small, 2018, 14, e1702131.	10.0	57

#	Article	IF	Citations
73	Thermo-responsive PNIPAm nanopillars displaying amplified responsiveness through the incorporation of nanoparticles. Nanoscale, 2018, 10, 1189-1195.	5.6	19
74	Polyelectrolyte Capping As Straightforward Approach toward Manipulation of Diffusive Transport in MOF Films. Langmuir, 2018, 34, 425-431.	3.5	8
75	Cascading reaction of arginase and urease on a graphene-based FET for ultrasensitive, real-time detection of arginine. Biosensors and Bioelectronics, 2018, 115, 104-110.	10.1	61
76	Self-assembled phosphate-polyamine networks as biocompatible supramolecular platforms to modulate cell adhesion. Biomaterials Science, 2018, 6, 2230-2247.	5 . 4	19
77	Layer-by-layer assembly of iron oxide-decorated few-layer graphene/PANI:PSS composite films for high performance supercapacitors operating in neutral aqueous electrolytes. Electrochimica Acta, 2018, 283, 1178-1187.	5.2	36
78	Enzyme Multilayers on Graphene-Based FETs for Biosensing Applications. Methods in Enzymology, 2018, 609, 23-46.	1.0	11
79	Thermal Annealing of Polyelectrolyte Multilayers: An Effective Approach for the Enhancement of Cell Adhesion. Advanced Materials Interfaces, 2017, 4, 1600126.	3.7	23
80	Thermally-induced softening of PNIPAm-based nanopillar arrays. Soft Matter, 2017, 13, 2453-2464.	2.7	43
81	Dangerous liaisons: anion-induced protonation in phosphate–polyamine interactions and their implications for the charge states of biologically relevant surfaces. Physical Chemistry Chemical Physics, 2017, 19, 8612-8620.	2.8	31
82	Cell Adhesion: Thermal Annealing of Polyelectrolyte Multilayers: An Effective Approach for the Enhancement of Cell Adhesion (Adv. Mater. Interfaces 1/2017). Advanced Materials Interfaces, 2017, 4, .	3.7	1
83	Noncovalent Approach toward the Construction of Nanofluidic Diodes with pH-Reversible Rectifying Properties: Insights from Theory and Experiment. Journal of Physical Chemistry C, 2017, 121, 9070-9076.	3.1	37
84	Layer-by-layer assemblies of highly connected polyelectrolyte capped-Pt nanoparticles for electrocatalysis of hydrogen evolution reaction. Applied Surface Science, 2017, 416, 24-32.	6.1	28
85	An Allâ€Plastic Fieldâ€Effect Nanofluidic Diode Gated by a Conducting Polymer Layer. Advanced Materials, 2017, 29, 1700972.	21.0	68
86	Solvent Effects on the Structure–Property Relationship of Redox-Active Self-Assembled Nanoparticle–Polyelectrolyte–Surfactant Composite Thin Films: Implications for the Generation of Bioelectrocatalytic Signals in Enzyme-Containing Assemblies. ACS Applied Materials & Diterfaces, 2017, 9, 1119-1128.	8.0	14
87	Tailored polyelectrolyte thin film multilayers to modulate cell adhesion. Biointerphases, 2017, 12, 04E403.	1.6	14
88	Integration of Biorecognition Elements on PEDOT Platforms through Supramolecular Interactions. Advanced Materials Interfaces, 2017, 4, 1700502.	3.7	38
89	Enhanced antiadhesive properties of chitosan/hyaluronic acid polyelectrolyte multilayers driven by thermal annealing: Low adherence for mammalian cells and selective decrease in adhesion for Gram-positive bacteria. Materials Science and Engineering C, 2017, 80, 677-687.	7.3	38
90	Thermosensitive Cationâ€Selective Mesochannels: PNIPAMâ€Capped Mesoporous Thin Films as Bioinspired Interfacial Architectures with Concerted Functions. Chemistry - A European Journal, 2017, 23, 14500-14506.	3.3	23

#	Article	IF	Citations
91	Gramicidin ion channels in a lipid bilayer supported on polyelectrolyte multilayer films: an electrochemical impedance study. Soft Matter, 2017, 13, 8922-8929.	2.7	15
92	Metal–organic frameworks meet polymer brushes: enhanced crystalline film growth induced by macromolecular primers. Materials Chemistry Frontiers, 2017, 1, 2256-2260.	5.9	19
93	Enzyme-polyelectrolyte multilayer assemblies on reduced graphene oxide field-effect transistors for biosensing applications. Biosensors and Bioelectronics, 2017, 92, 661-667.	10.1	119
94	Bioinspired integrated nanosystems based on solid-state nanopores: "iontronic―transduction of biological, chemical and physical stimuli. Chemical Science, 2017, 8, 890-913.	7.4	136
95	The Influence of Divalent Anions on the Rectification Properties of Nanofluidic Diodes: Insights from Experiments and Theoretical Simulations. ChemPhysChem, 2016, 17, 2718-2725.	2.1	37
96	Amine-appended polyaniline as a water dispersible electroactive polyelectrolyte and its integration into functional self-assembled multilayers. Electrochimica Acta, 2016, 210, 435-444.	5.2	20
97	Impact of thermal annealing on wettability and antifouling characteristics of alginate poly-l-lysine polyelectrolyte multilayer films. Colloids and Surfaces B: Biointerfaces, 2016, 145, 328-337.	5.0	34
98	Self-limited self-assembly of nanoparticles into supraparticles: towards supramolecular colloidal materials by design. Molecular Systems Design and Engineering, 2016, 1, 155-162.	3.4	46
99	Metalâ€Organic Frameworks Help Conducting Polymers Optimize the Efficiency of the Oxygen Reduction Reaction in Neutral Solutions. Advanced Materials Interfaces, 2016, 3, 1600047.	3.7	33
100	High Resistivity Lipid Bilayers Assembled on Polyelectrolyte Multilayer Cushions: An Impedance Study. Langmuir, 2016, 32, 6263-6271.	3.5	24
101	Noncovalent functionalization of solid-state nanopores via self-assembly of amphipols. Nanoscale, 2016, 8, 1470-1478.	5.6	47
102	Ionic Conductance of Polyelectrolyte-Modified Nanochannels: Nanoconfinement Effects on the Coupled Protonation Equilibria of Polyprotic Brushes. Journal of Physical Chemistry C, 2016, 120, 4789-4798.	3.1	52
103	Recent developments in the layer-by-layer assembly of polyaniline and carbon nanomaterials for energy storage and sensing applications. From synthetic aspects to structural and functional characterization. Nanoscale, 2016, 8, 9890-9918.	5.6	74
104	Molecular transport properties of ZIF-8 thin films in aqueous environments: The critical role of intergrain mesoporosity as diffusional pathway. Microporous and Mesoporous Materials, 2016, 220, 253-257.	4.4	17
105	Polyanilines with Pendant Amino Groups as Electrochemically Active Copolymers at Neutral pH. ChemElectroChem, 2015, 2, 2011-2019.	3.4	22
106	Supramolecular Surface Chemistry: Substrateâ€Independent, Phosphateâ€Driven Growth of Polyamineâ€Based Multifunctional Thin Films. Advanced Functional Materials, 2015, 25, 4144-4152.	14.9	45
107	Mesophase Transformation in Amphiphilic Hyperbranched Polymers Induced by Transition Metal Ion Complexation. Creating Well-Defined Metallo-Supramolecular Assemblies from "lll-Defined―Building Blocks. ACS Macro Letters, 2015, 4, 94-100.	4.8	4
108	Mesoporous Hybrid Thin Film Membranes with PMETAC@Silica Architectures: Controlling Ionic Gating through the Tuning of Polyelectrolyte Density. Chemistry of Materials, 2015, 27, 808-821.	6.7	60

#	Article	IF	CITATIONS
109	Gated supramolecular chemistry in hybrid mesoporous silica nanoarchitectures: controlled delivery and molecular transport in response to chemical, physical and biological stimuli. Chemical Communications, 2015, 51, 6050-6075.	4.1	149
110	Formation of redox-active self-assembled polyelectrolyteâ€"surfactant complexes integrating glucose oxidase on electrodes: Influence of the self-assembly solvent on the signal generation. Bioelectrochemistry, 2015, 105, 117-122.	4.6	10
111	Polydopamine Meets Solid-State Nanopores: A Bioinspired Integrative Surface Chemistry Approach To Tailor the Functional Properties of Nanofluidic Diodes. Journal of the American Chemical Society, 2015, 137, 6011-6017.	13.7	131
112	pH-responsive ion transport in polyelectrolyte multilayers of poly(diallyldimethylammonium) Tj ETQq0 0 0 rgBT /O weak anionic groups. Physical Chemistry Chemical Physics, 2015, 17, 29935-29948.	verlock 10 2.8) Tf 50 627 23
113	Recognition-driven assembly of self-limiting supramolecular protein nanoparticles displaying enzymatic activity. Chemical Communications, 2015, 51, 14754-14757.	4.1	19
114	Host–guest supramolecular chemistry in solid-state nanopores: potassium-driven modulation of ionic transport in nanofluidic diodes. Nanoscale, 2015, 7, 15594-15598.	5.6	82
115	Early stages of ZIF-8 film growth: the enhancement effect of primers exposing sulfonate groups as surface-confined nucleation agents. RSC Advances, 2015, 5, 73958-73962.	3.6	15
116	Unusual temperature-induced swelling of ionizable poly(N-isopropylacrylamide)-based microgels: experimental and theoretical insights into its molecular origin. Soft Matter, 2015, 11, 8879-8886.	2.7	28
117	Nanofluidic Diodes with Dynamic Rectification Properties Stemming from Reversible Electrochemical Conversions in Conducting Polymers. Journal of the American Chemical Society, 2015, 137, 15382-15385.	13.7	94
118	Hydrophobic interactions leading to a complex interplay between bioelectrocatalytic properties and multilayer meso-organization in layer-by-layer assemblies. Physical Chemistry Chemical Physics, 2014, 16, 20844-20855.	2.8	27
119	On the supramacromolecular structure of core–shell amphiphilic macromolecules derived from hyperbranched polyethyleneimine. Journal of Colloid and Interface Science, 2014, 436, 243-250.	9.4	7
120	Effect of Gold Nanoparticles on the Structure and Electronâ€Transfer Characteristics of Glucose Oxidase Redox Polyelectrolyteâ€Surfactant Complexes. Chemistry - A European Journal, 2014, 20, 13366-13374.	3.3	21
121	Layer-by-layer assembly of polymersomes and polyelectrolytes on planar surfaces and microsized colloidal particles. Journal of Colloid and Interface Science, 2014, 421, 132-140.	9.4	35
122	Self-Assembled Redox Polyelectrolyte-Surfactant Complexes: Nanostructure and Electron Transfer Characteristics of Supramolecular Films with Built-In Electroactive Chemical Functions. Electrochimica Acta, 2014, 118, 124-129.	5.2	15
123	Electron Transfer Properties of Dual Self-Assembled Architectures Based on Specific Recognition and Electrostatic Driving Forces: Its Application To Control Substrate Inhibition in Horseradish Peroxidase-Based Sensors. Analytical Chemistry, 2013, 85, 2414-2422.	6.5	18
124	Supramacromolecular organization of gold nanocrystals capped with amphiphilic hyperbranched polyethyleneimine. Journal of Colloid and Interface Science, 2013, 397, 206-209.	9.4	9
125	Heterogeneous Catalytic Activity of Platinum Nanoparticles Hosted in Mesoporous Silica Thin Films Modified with Polyelectrolyte Brushes. ACS Applied Materials & Samp; Interfaces, 2013, 5, 8833-8840.	8.0	35
126	Recognition-driven layer-by-layer construction of multiprotein assemblies on surfaces: a biomolecular toolkit for building up chemoresponsive bioelectrochemical interfaces. Physical Chemistry Chemical Physics, 2012, 14, 11027.	2.8	41

#	Article	IF	Citations
127	Molecular Transport in Thin Thermoresponsive Poly(<i>N</i> -isopropylacrylamide) Brushes with Varying Grafting Density. Journal of Physical Chemistry C, 2012, 116, 13944-13953.	3.1	33
128	lonic self-assembly of electroactive biorecognizable units: electrical contacting of redox glycoenzymes made easy. Chemical Communications, 2012, 48, 10868.	4.1	25
129	Proton and Calcium-Gated Ionic Mesochannels: Phosphate-Bearing Polymer Brushes Hosted in Mesoporous Thin Films As Biomimetic Interfacial Architectures. Langmuir, 2012, 28, 3583-3592.	3.5	67
130	Phototunable Response in Caged Polymer Brushes. Macromolecules, 2012, 45, 3213-3220.	4.8	43
131	Light-activated gating and permselectivity in interfacial architectures combining "caged―polymer brushes and mesoporous thin films. Chemical Communications, 2012, 48, 1422-1424.	4.1	59
132	Polymer brushes here, there, and everywhere: Recent advances in their practical applications and emerging opportunities in multiple research fields. Journal of Polymer Science Part A, 2012, 50, 3225-3258.	2.3	349
133	Layer-by-layer assemblies in nanoporous templates: nano-organized design and applications of soft nanotechnology. Soft Matter, 2011, 7, 8709.	2.7	77
134	Manipulation of Molecular Transport into Mesoporous Silica Thin Films by the Infiltration of Polyelectrolytes. Langmuir, 2011, 27, 4328-4333.	3.5	45
135	Electrochemical Sensing Platform Based on Polyelectrolyte–Surfactant Supramolecular Assemblies Incorporating Carbon Nanotubes. Analytical Chemistry, 2011, 83, 8011-8018.	6.5	29
136	Multifunctional hybrids by combining ordered mesoporous materials and macromolecular building blocks. Chemical Society Reviews, 2011, 40, 1107.	38.1	266
137	Polymer Brushes with Phototriggered and Phototunable Swelling and pH Response. Macromolecular Rapid Communications, 2011, 32, 1699-1703.	3.9	42
138	Facile Glycoenzyme Wiring to Electrode Supports by Redoxâ€Active Biosupramolecular Glue. Chemistry - A European Journal, 2010, 16, 13970-13975.	3.3	18
139	Layer-by-Layer Assembly of Polyelectrolytes into Ionic Current Rectifying Solid-State Nanopores: Insights from Theory and Experiment. Journal of the American Chemical Society, 2010, 132, 8338-8348.	13.7	265
140	A facile route for the preparation of azide-terminated polymers. "Clicking―polyelectrolyte brushes on planar surfaces and nanochannels. Polymer Chemistry, 2010, 1, 183-192.	3.9	59
141	Responsive Polymers End-Tethered in Solid-State Nanochannels: When Nanoconfinement Really Matters. Journal of the American Chemical Society, 2010, 132, 12404-12411.	13.7	171
142	Redox-Active Concanavalin A: Synthesis, Characterization, and Recognition-Driven Assembly of Interfacial Architectures for Bioelectronic Applications. Langmuir, 2010, 26, 13684-13696.	3.5	30
143	Supramolecular assembly of glucose oxidase on concanavalin A—modified gold electrodes. Physical Chemistry Chemical Physics, 2010, 12, 8071.	2.8	31
144	Hybrid Polymerâ^'Silicon Proton Conducting Membranes via a Pore-Filling Surface-Initiated Polymerization Approach. ACS Applied Materials & Samp; Interfaces, 2010, 2, 279-287.	8.0	40

#	Article	IF	Citations
145	Proton-regulated rectified ionic transport through solid-state conical nanopores modified with phosphate-bearing polymer brushes. Chemical Communications, 2010, 46, 1908-1910.	4.1	111
146	Nanochemistry in Confined Environments: Polyelectrolyte Brush-Assisted Synthesis of Gold Nanoparticles inside Ordered Mesoporous Thin Films. Langmuir, 2010, 26, 5559-5567.	3.5	61
147	Highly Protonâ€Conducting Selfâ€Humidifying Microchannels Generated by Copolymer Brushes on a Scaffold. Angewandte Chemie - International Edition, 2009, 48, 3124-3128.	13.8	56
148	Ionic Transport Through Single Solidâ€State Nanopores Controlled with Thermally Nanoactuated Macromolecular Gates. Small, 2009, 5, 1287-1291.	10.0	244
149	Mesoporous Films and Polymer Brushes Helping Each Other To Modulate Ionic Transport in Nanoconfined Environments. An Interesting Example of Synergism in Functional Hybrid Assemblies. Journal of the American Chemical Society, 2009, 131, 10866-10868.	13.7	135
150	Photoresponsive Polymer Brushes for Hydrophilic Patterning. Langmuir, 2009, 25, 1744-1749.	3.5	71
151	Anti-fouling characteristics of surface-confined oligonucleotide strands bioconjugated on streptavidin platforms in the presence of nanomaterials. Talanta, 2009, 78, 1102-1106.	5 . 5	9
152	Single Conical Nanopores Displaying pH-Tunable Rectifying Characteristics. Manipulating Ionic Transport With Zwitterionic Polymer Brushes. Journal of the American Chemical Society, 2009, 131, 2070-2071.	13.7	341
153	Synthetic Proton-Gated Ion Channels via Single Solid-State Nanochannels Modified with Responsive Polymer Brushes. Nano Letters, 2009, 9, 2788-2793.	9.1	299
154	Tailoring of Poly(ether ether ketone) Surface Properties via Surface-Initiated Atom Transfer Radical Polymerization. Langmuir, 2009, 25, 6214-6220.	3.5	54
155	Polymer brush resist for responsive wettability. Soft Matter, 2009, 5, 2738.	2.7	54
156	Facile molecular design of hybrid functional assemblies with controllable transport properties: mesoporous films meet polyelectrolyte brushes. Chemical Communications, 2009, , 2553.	4.1	65
157	Thickness-Dependent Properties of Polyzwitterionic Brushes. Macromolecules, 2008, 41, 6317-6321.	4.8	116
158	Biosensing and Supramolecular Bioconjugation in Single Conical Polymer Nanochannels. Facile Incorporation of Biorecognition Elements into Nanoconfined Geometries. Journal of the American Chemical Society, 2008, 130, 16351-16357.	13.7	270
159	Facile Large-Scale Fabrication of Proton Conducting Channels. Journal of the American Chemical Society, 2008, 130, 13140-13144.	13.7	56
160	Synthesis of gold nanoparticles inside polyelectrolyte brushes. Journal of Materials Chemistry, 2007, 17, 3433.	6.7	85
161	Synthesis and Characterization of Poly(3-Sulfopropylmethacrylate) Brushes for Potential Antibacterial Applications. Langmuir, 2007, 23, 3314-3321.	3.5	150
162	Electrochemical Characteristics of Polyelectrolyte Brushes with Electroactive Counterions. Langmuir, 2007, 23, 10389-10394.	3.5	69

#	Article	lF	CITATIONS
163	Explanation for the Apparent Absence of Collapse of Polyelectrolyte Brushes in the Presence of Bulky Ions. Journal of Physical Chemistry B, 2007, 111, 7034-7040.	2.6	49
164	Polyelectrolyte Brushes as Efficient Ultrathin Platforms for Site-Selective Copper Electroless Deposition. Langmuir, 2006, 22, 6730-6733.	3.5	73
165	UCST Wetting Transitions of Polyzwitterionic Brushes Driven by Self-Association. Angewandte Chemie - International Edition, 2006, 45, 1770-1774.	13.8	223
166	Mechanically Induced Generation of Counterions Inside Surface-Grafted Charged Macromolecular Films: Towards Enhanced Mechanotransduction in Artificial Systems. Angewandte Chemie - International Edition, 2006, 45, 7440-7443.	13.8	57
167	The Effect of [Cul]/[Cull] Ratio on the Kinetics and Conformation of Polyelectrolyte Brushes by Atom Transfer Radical Polymerization. Macromolecular Rapid Communications, 2006, 27, 1632-1636.	3.9	48
168	Locking and Unlocking of Polyelectrolyte Brushes: Toward the Fabrication of Chemically Controlled Nanoactuators. Angewandte Chemie - International Edition, 2005, 44, 4578-4581.	13.8	150
169	Following Polymer Brush Growth Using the Quartz Crystal Microbalance Technique. Macromolecular Rapid Communications, 2005, 26, 1117-1121.	3.9	64
170	AFM study of cationically charged polymer brushes: switching between soft and hard matter. Soft Matter, 2005, $1,66$.	2.7	80
171	Switching the Properties of Polyelectrolyte Brushes via "Hydrophobic Collapse― Macromolecules, 2005, 38, 10192-10199.	4.8	175
172	Powering Up the Oxygen Reduction Reaction through the Integration of O ₂ -Adsorbing Metalâ€"Organic Frameworks on Nanocomposite Electrodes. ACS Applied Energy Materials, 0, , .	5.1	9